

DEPARTMENT OF PHYSICS M.Sc., Physics

REGULATIONS AND SYLLABUS [For the candidates admitted from the Academic Year 2022 – 2023 onwards]

ALAGAPPA UNIVERSITY (A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC) Karaikudi -630003, Tamil Nadu.

ALAGAPPA UNIVERSITY DEPARTMENT OF PHYSICS Karaikudi - 630003, Tamil Nadu.

REGULATIONS AND SYLLABUS - (CBCS - University Department) [For the candidates admitted from the Academic Year 2022 – 2023 onwards]

Name of the Department	: Physics	
Name of the Programme	: M.Sc., Physics	
Duration of the Programme	: Full Time (Two Years)	

Choice Based Credit System

A Choice-Based Credit System is a flexible system of learning. This system allows students to gain knowledge at their own tempo. Students shall decide on electives from a wide range of elective courses offered by the University Departments in consultation with the Department committee. Students undergo additional courses and acquire more than the required number of credits. They can also adopt an inter-disciplinary and intra-disciplinary approach to learning, and make the best use of the expertise of available faculty.

Programme

"Programme" means a course of study leading to the award of a degree in a discipline.

Courses

"Course" is a component (a paper) of a programme. Each course offered by the Department is identified by a unique course code. A course contains lectures/tutorials/laboratory /seminar/project / practical training/report writing /Viva-voce, etc or a combination of these, to meet effectively the teaching and learning needs.

Credits

The term "Credit" refers to the weightage given to a course, usually in relation to the instructional hours assigned to it. Normally in each of the courses credits will be assigned on the basis of the number of lectures/tutorial/laboratory and other forms of learning required completing the course contents in a 15-week schedule. One credit is equal to one hour of lecture per week. For laboratory/field work one credit is equal to two hours.

Semesters

An Academic year is divided into two Semesters. In each semester, courses are offered in 15 teaching weeks and the remaining 5 weeks are to be utilized for conduct of examination and evaluation purposes. Each week has 30 working hours spread over 5/6 days a week.

Medium of Instruction

Medium of instruction is English.

Departmental Committee

The Departmental Committee consists of the faculty of the Department. The Departmental Committee shall be responsible for admission to all the programmes offered by the Department including the conduct of entrance tests, verification of records, admission, and evaluation. The Departmental Committee determines the deliberation of courses and specifies the allocation of credits semester-wise and course-wise. For each course, it will also identify the number of credits for lectures, tutorials, practicals, seminars etc. The courses (Core/Discipline Specific Elective/Non-Major Elective) are designed by teachers and approved by the Departmental Committee. Courses approved by the Departmental Committee shall be approved by the Board of Studies/Broad Based Board of Studies. A teacher offering a course will also be responsible for maintaining attendance and performance sheets (CIA -I, CIA-II, assignments and seminar) of all the students registered for the course. The Non-major elective programme & MOOCs coordinators and Internship Mentor are responsible for submitting the performance sheets to the Head of the Department. The Head of the Department consolidates all such performance sheets of courses pertaining to the programmes offered by the department. Then forward the same to the Controller of Examinations.

PEO1	To develop the ability to understand the various concepts of Physics and
	mastering in the fields of materials science.
PEO2	To cultivate and nurture the scientific approach and research aptitude.
PEO3	To practice problem solving skills to keep abreast at National Level.
PEO4	To stimulate creativity, innovation and out of box thinking while learning.
PEO5	To apply and testify the learned concepts to tackle the challenges in the
	advancement of Physics and promote interdisciplinary nature.
PEO6	To acquire interpersonal and leadership skills through academic collaborations.
PEO7	To inculcate societal relevance and professional ethics as a scholar.

Programme Educational Objectives - (PEO)

PEO8	To uphold discipline specific sustainability and conservation towards mother
	nature.
PEO9	To contribute for the advancement of Science by taking research as a career.
PEO10	To train competitiveness for employability and entrepreneurship.

Programme Specific Objectives - (PSO)

PSO1	Introducing inclusiveness in teaching, learning,	Competency in Basic and
	experimenting, practicing and researching in various	Advanced Scientific
	dimensions of Physics to elevate students'	Concepts and
	competitiveness.	methodology.
PSO2	Promoting critical thinking, reasoning, evolving and	Use of creativity and
	implementing these in deriving solutions for discipline	innovation in problem
	specific problems to cultivate scientific approach and	solving and driving
	culture of research aptitude.	solutions
PSO3	Resourcing dynamic syllabus with the aid of modern	Awareness on recent
	analytical tools to address the current challenges in the	developments and usage of
	advancement of Physics and in the society to boost	analytical tools
	acclimatization and interdisciplinary nature.	-
PSO4	Fostering independency through internship, projects and	Adaptability and self
	field visit which strengthens interpersonal communication	directed
	and consistency in knowledge enrichment.	
PSO5	Training to exhibit impressive individual talent and	Advancement in learning,
	develop skills to compete effectively with the peers and	Employability and
	professionals.	Entrepreneurship.
Progra	mme Outcome-(PO)	
0		

Programme Outcome-(PO)

PO1	Acquiring and integrating knowledge in Physics Concepts.	Basic knowledge
PO2	Creating Ability to compare and contrast, inference and	Critical thinking
	interpretation, gathering information and analyzing and making	
	decision and problem solving.	
PO3	Enhancing tacking ability, evaluating information skillfully,	Problem solving
	testing the concepts, building the results and implementing.	
PO4	Inculcating the process of breakdown of complex problems into	Analytical reasoning
	components and understanding their interconnectivity for	
	arriving solutions.	
PO5	Emulating curiosity and innovation to raise questions for gaining	Scientific reasoning
	knowledge on scientific concepts and drawing conclusions.	
PO6	Devising methodology of learning with concern on society and	Environment and
	environment for sustainability.	Sustainability
PO7	Aiding research and development with modern instruments to	Use of analytical
	gain skills, competency and keep abreast	tools

PO8	Enabling out of the box thinking and implementing innovative ideas into practical applications.	Curriculum Design and Application
PO9	Upholding ethical values, responsive citizens and be professional.	Soft skills
PO10	Being consistent with knowledge enrichment towards self reliant, inventive, flexibility and collective development.	Adaptability and self directed

Programme Specific Outcome (PSO)

PSO1	Revisiting the basics of Physics in relevance to the course with inclusiveness of the students towards capacity building for experimenting, practicing and researching.	Competency in Basic and AdvancedBasic and Scientific ConceptsConceptsand methodology.
PSO2	Cultivating out of the box thinking and practicing analytical ability with research aptitude for the discipline specific problems.	Use of creativity and innovation in problem solving and driving solutions
PSO3	Updating with course related advancements and challenges to keep abreast while learning the course and discussing their societal relevance issues.	Awareness on recent developments and usage of analytical tools
PSO4	Enriching the knowledge with interdisciplinary in nature by promoting internship, projects and field visit.	Adaptability and self directed
PSO5	Acquiring interpersonal skills and exhibiting competitiveness among peers and professionals.	Advancement in learning, Employability and Entrepreneurship.

Eligibility for Admission

A candidate who has passed B.Sc. Degree Examination with Physics or Applied Physics as main course of study of any University with allied subjects of Mathematics and Chemistry or any of the B.Sc. Degree Examination with specialization such as Applied Physics, Electronics, Nuclear Physics, Biophysics, Nanoscience or any other specialization in Physics of some other University accepted by the Syndicate as equivalent thereto, subject to such condition as may be prescribed therefore shall be permitted to appear and qualify for the M.Sc. Degree in Physics of this University after a course of study of two academic years.

Minimum Duration of Programme

The programme is for a period of two years. Each year shall consist of two semesters viz. Odd and Even semesters. Odd semester shall be from June / July to October / November and even semester shall be from November / December to April / May. Each semester there shall be 90 working days consisting of 6 teaching hours per working day (5 days/week).

Components

A PG programme consists of number of courses. The term "course" is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a "paper" in the conventional sense. The following are the various categories of the courses suggested for the PG programme:

- A. Core courses (CC) "Core Papers" means "the core courses" related to the programme concerned including practicals and project work offered under the programme and shall cover core competency, critical thinking, analytical reasoning, and research skill.
- B. Discipline-Specific Electives (DSE) means the courses offered under the programme related to the major but are to be selected by the students, shall cover additional academic knowledge, critical thinking, and analytical reasoning.
- C. Non-Major Electives (NME) Exposure beyond the discipline. Students have to undergo a total of two Non Major Elective courses with 2 credits offered by other departments (one in IInd semester another in IIIrd semester). A uniform time frame of 3 hours on a common day (Tuesday) shall be allocated for the Non-Major Electives. Non Major Elective courses offered by the departments pertaining to a semester should be announced before the end of previous semester. Registration process: Students have to register for the Non-Major Elective course within 15 days from the commencement of the semester either in the department or in online.
- D. Self Learning Courses from MOOCs platforms. MOOCs shall be on voluntary for the students. All PG programmes students have to undergo a total of 2 Self Learning Courses (MOOCs) one in IInd semester and another in IIIrd semester. The actual credits earned through MOOCs shall be transferred to the credit plan of programmes as extra credits. While selecting the MOOCs, preference shall be given to the course related to employability skills.
- E. Projects/Dissertation/Internships (Maximum Marks: 200): The students shall undertake the Projects/Dissertation/Internships work during the fourth semester.

Project/Dissertation

(a) Plan of work:

The student should prepare plan of work for the project, get the approval of the guide and should be submitted to the University during the fourth semester of their study. In case, the student wants to avail the facility from other University/Laboratory/Institution, they will undertake the work with the permission of the guide and Head of the Department (HOD) and acknowledge the alien facilities utilized by them. The duration of the project research shall be a minimum of three months in the fourth semester.

(b) Project work outside the Department:

In case the student stays away for work from the Department for more than one month, specific approval of the Head of the Department should be obtained.

(c) No. of copies/distribution of project work:

The students should prepare three copies of project work in bound volume and submit the same for the evaluation by Examiners. After evaluation, one copy is to be retained in the Department library and one copy for the guide and one copy for the student.

Format to be followed for dissertation/project report

The format /certificate for thesis to be followed by the student are given below

- Title page
- Certificate
- Acknowledgment
- Content as follows

Chapter No.	TITLE	Page No.
1.	Introduction	
2.	Aim and Objectives	
3.	Review of Literature	
4.	Materials and Methods	
5.	Results	
6.	Discussion	
7.	Summary	
8.	References	

Format of the Title Page:

Title of Dissertaion/Project Work

Dissertation/Project submitted in partial fulfilment of the requirement for the Degree of Master of Science in PHYSICS to the Alagappa University, Karaikudi - 630 003.

By

Students Name:

Register Number:

Under the Guidance of

(Faculty Name)

University Logo

Department of Physics

ALAGAPPA UNIVERSITY

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC, 2019: QS ASIA Rank 216, QS BRICS Rank-104, QS India Rank-20)

> Karaikudi 630003 Month and Year

Format of certificates

Certificate – (Guide)

Place: Karaikudi Date: _____ **Research Supervisor**

Certificate - (HOD)

Place: Karaikudi Date:

Head of the Department

Declaration - (Student)

I hereby declare that the Dissertation/Project entitled "------" submitted to the Alagappa University for the award of the degree of Master of Science in Physics has been carried out by me under the guidance of Dr. -----, Assistant Professor, Department of Physics, Alagappa University, Karaikudi – 630 003. This is my original and independent work and has not previously formed the basis of the award of any degree, diploma, associateship, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi Date:

(Student)

Teaching methods

- The classroom teaching shall be through conventional lectures and use of ICT and power point presentations.
- The lecture shall be such that the student should participate actively in the discussion.
- Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill.
- In the laboratory, instruction shall be given for the experiments followed by demonstration and finally the students have to do experiments individually.
- Periodic tests would be conducted and special attention shall be given to the slow learning students.

Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students who have earned 74% to 70% of attendance need to apply for condonation in the prescribed form with the prescribed fee. Students who have earned 69% to 60% of attendance need to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have below 60% of attendance are not eligible to appear for the End Semester Examination (ESE). They shall redo the semester(s) after completion of the programme, with the prior permission of the Registrar of the University.

Examination

The examinations shall be conducted separately for theory and practical to assess (remembering, understanding, applying, analyzing, evaluating, and creating) the knowledge acquired during the study. There shall be two systems of examinations viz., internal and external examinations. The internal examinations shall be conducted as Continuous Internal Assessment tests I and II (CIA Test I & II).

A. Internal Assessment

The internal assessment shall comprise a maximum of 25 marks for each subject. The following procedure shall be followed for awarding internal marks.

Theory - 25 marks

S. No.	Content	Marks
1.	Average marks of two CIA tests	15
2.	Seminar/group discussion/quiz	5
3.	Assignment/field trip report/case study report	5
	Total	25

For Special Course - 25 marks

S. No.	Content	Marks
1.	Two presentations	15
2.	Group discussion/quiz	5
3.	Assignment	5
	Total	25

Practical - 25 Marks

S. No.	Content	Marks
1	Major Experiment	10
2	Minor Experiment	5
3	Observation	10
	Total	25

S. No.	Content	Marks
1	Two presentations (mid-term)	30
2	Progress report	20
	Total	50

Project/Dissertation/Internship - 50 Marks (assess by Guide in-charge/HOD/Supervisor)

B. External Examination

- There shall be examinations at the end of each semester, for odd semester in the month of October / November; for even semester in April / May.
- A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in October / November or April / May. However, candidates who have arrears in Practical shall be permitted to take their arrear Practical examination only along with Regular Practical examination in the respective semester.
- A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit / regulation prescribed or belated joining or on medical grounds, the candidates are permitted to move to the next semester. Such candidates shall re-do the missed semester after completion of the programme.
- For the Project Report/ Dissertation Work / Internship, the maximum marks will be 100 for project report evaluation and for the Viva-Voce it is 50 marks (if in some programmes, if the project is equivalent to more than one course, the project marks would be in proportion to the number of equivalent courses).
- Viva-Voce: Each candidate shall be required to appear for Viva-Voce Examination (in defense of the Dissertation Work /Project/ Internship).

C. Scheme of External Examination (Question Paper Pattern)

Section A	10 questions. All questions	$10 \times 1 = 10$	10 questions – 2
	carry equal marks. (Objective		each from every
	type questions)		unit
Section B	5 questions Either / or type like	$5 \times 5 = 25$	5 questions -1
	1.a (or) b. All questions carry		each from every
	equal marks		unit
Section C	5 questions Either / or type like	$5 \times 8 = 40$	5 questions –
	1.a (or) b. All questions carry		Should cover all
	equal marks		units

Theory - Maximum 75 Marks

For Special course

Report	25 Marks
Viva-voce	50 Marks

Practical - Maximum 75 Marks

Experimental Description	25 Marks
Experimental setup	5 Marks
Execution Demonstration	25 Marks
Record note	10 Marks
Viva-voce	10 Marks

Dissertation /Project report/Internship report Scheme of evaluation

Dissertation /Project report/Internship report	100 Marks
Viva-voce	50 Marks

Results

The results of all the examinations will be published through the Department where the student underwent the course as well as through University Website.

Passing minimum

- A candidate shall be declared to have passed in each course if he/she secures not less than 40% marks in the End Semester Examinations and 40% marks in the Internal Assessment and not less than 50% in the aggregate, taking Continuous Internal Assessment and End Semester Examinations marks together.
- The candidates not obtained 50% in the Internal Assessment are permitted to improve their Internal Assessment marks in the subsequent semesters (2 chances will be given) by writing the CIA tests and by submitting assignments.
- Candidates, who have secured the pass marks in the End-Semester Examination and in the CIA but failed to secure the aggregate minimum pass mark (E.S.E + C.I.A), are permitted to improve their Internal Assessment mark in the following semester and/or in University examinations.

- A candidate shall be declared to have passed in the Project / Dissertation / Internship if he /she get not less than 40% in each of the Project / Dissertation / Internship Report and Viva-Voce and not less than 50% in the aggregate of both the marks for Project Report and Viva-Voce.
- A candidate who gets less than 50% in the Project / Dissertation / Internship Report must resubmit the thesis. Such candidates need to take again the Viva-Voce on the resubmitted Project report.

Grading of the Courses

The following table gives the marks, Grade points, Letter Grades and classifications meant to indicate the overall academic performance of the candidate.

RANGE OF MARKS	GRADE POINTS	LETTER GRADE	DESCRIPTION
90 - 100	9.0 - 10.0	0	Outstanding
80 - 89	8.0 - 8.9	D+	Excellent
75 - 79	7.5 – 7.9	D	Distinction
70 - 74	7.0 – 7.4	A+	Very Good
60 - 69	6.0 - 6.9	A	Good
50 - 59	5.0 - 5.9	В	Average
00 - 49	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

Conversion of Marks to Grade Points and Letter Grade (Performance in Paper / Course)

- a) Successful candidates passing the examinations and earning GPA between 9.0 and 10.0 and marks from 90 100 shall be declared to have Outstanding (O).
- b) Successful candidates passing the examinations and earning GPA between 8.0 and 8.9 and marks from 80 - 89 shall be declared to have Excellent (D+).
- c) Successful candidates passing the examinations and earning GPA between 7.5 7.9 and marks from 75 79 shall be declared to have Distinction (D).
- d) Successful candidates passing the examinations and earning GPA between 7.0 7.4 and marks from 70 74 shall be declared to have Very Good (A+).

- e) Successful candidates passing the examinations and earning GPA between 6.0 6.9 and marks from 60 69 shall be declared to have Good (A).
- f) Successful candidates passing the examinations and earning GPA between 5.0 5.9 and marks from 50 59 shall be declared to have Average (B).
- g) Candidates earning GPA between 0.0 and marks from 00 49 shall be declared to have Reappear (U).
- h) Absence from an examination shall not be taken as an attempt.

From the second semester onwards the total performance within a semester and continuous performance starting from the first semester are indicated respectively by Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA). These two are calculated by the following formulate

GRADE POINT AVERAGE (GPA) = $\Sigma_i C_i G_i / \Sigma_i C_i$

GPA = <u>Sum of the multiplication of Grade Points by the credits of the courses</u> Sum of the credits of the courses in a Semester

Classification of the final result

ССРА	Grade	Classification of Final Result
9.5 - 10.0	0+	First Class – Exemplary*
9.0 and above but below 9.5	0	
8.5 and above but below 9.0	D++	First Class with Distinction*
8.0 and above but below 8.5	D+	
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	First Class
6.5 and above but below 7.0	A+	
6.0 and above but below 6.5	Α	
5.5 and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	В	
0.0 and above but below 5.0	U	Re-appear

The final result of the candidate shall be based only on the CGPA earned by the candidate.

- a) Successful candidates passing the examinations and earning CGPA between 9.5 and 10.0 shall be given Letter Grade (O+), those who earned CGPA between 9.0 and 9.4 shall be given Letter Grade (O) and declared to have First Class –Exemplary*.
- b) Successful candidates passing the examinations and earning CGPA between 7.5 and 7.9 shall be given Letter Grade (D), those who earned CGPA between 8.0 and 8.4 shall be given Letter Grade (D+), those who earned CGPA between 8.5 and 8.9 shall be given Letter Grade (D++) and declared to have First Class with Distinction*.
- c) Successful candidates passing the examinations and earning CGPA between 6.0 and 6.4 shall be given Letter Grade (A), those who earned CGPA between 6.5 and 6.9 shall be given Letter Grade (A+), those who earned CGPA between 7.0 and 7.4 shall be given Letter Grade (A++) and declared to have First Class.
- d) Successful candidates passing the examinations and earning CGPA between 5.0 and 5.4 shall be given Letter Grade (B), those who earned CGPA between 5.5 and 5.9 shall be given Letter Grade (B+) and declared to have passed in Second Class.
- i) Candidates those who earned CGPA between 0.0 and 4.9 shall be given Letter Grade (U) and declared to have Re-appear.
- e) Absence from an examination shall not be taken as an attempt.

CUMULATIVE GRADE POINT AVERAGE (CGPA) = $\Sigma_n \Sigma_i C_{ni}$ $G_{ni} / \Sigma_n \Sigma_i C_{ni}$

CGPA = Sum of the multiplication of Grade Points by the credits of the entire ProgrammeSum of the credits of the courses for the entire Programme

Where 'Ci' is the Credit earned for Course i in any semester; 'Gi' is the Grade Point obtained by the student for Course i and 'n' refers to the semester in which such courses were credited.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses passed starting from the first semester to the current semester.

Note: * The candidates who have passed in the first appearance and within the prescribed Semesters of the PG Programme are alone eligible for this classification.

Maximum duration of the completion of the programme

The maximum period for the completion of M.Sc. Physics programme shall not exceed eight semesters continuing from the first semester.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree only after he/ she has earned the minimum required credits prescribed for the Programme (i.e. 90 credits).

Village Extension Programme

The Sivaganga and Ramnad districts are very backward districts where a majority of people lives in poverty. The rural mass is economically and educationally backward. Thus the aim of the introduction of this Village Extension Programme is to extend outreach programs in environmental awareness, social activities, hygiene, and health to the rural people of this region. The students in their third semester have to visit any one of the adopted villages within the jurisdiction of Alagappa University and can arrange various programs to educate the rural mass in the following areas for three day based on the theme.1. Environmental awareness 2. Hygiene and Health. A minimum of two faculty members can accompany the students and guide them.

SI.	G			T (D	No. of	Contact	Ma	ırks	T ()
No.	Course	Code No.	Title of the Course	T/P	Credit	Hours/ Week	Internal	External	Total
			I SEM	ESTE	R				
1	521101	Core 1	Classical Mechanics	Т	4	4	25	75	100
2	521102	Core 2	Mathematical Physics-I	Т	4	4	25	75	100
3	521103	Core 3	Electronics	Т	4	4	25	75	100
4	521104	Core 4 Lab 1	Electronics Laboratory	Р	5	10	25	75	100
5		DSE* 1		Т	4	4	25	75	100
6	521106	SC*	Skill Development		3	3	25	75	100
7			Library/Yoga			1			
	I	1	Total		24	30	150	450	600
			II SEN	IESTI	ER				
8	521201	Core 5	Quantum Mechanics-I	Т	4	4	25	75	100
9	521202	Core 6	Mathematical Physics-II	Т	4	4	25	75	100
10	521203	Core 7	Electromagnetic Theory	Т	4	4	25	75	100
11	521204	Core 8 Lab 2	Advanced Physics Laboratory	Р	5	10	25	75	100
12		DSE*2		Т	4	4	25	75	100
13	-	NME	Non Major Elective-I		2	3	25	75	100
14	*SLC - I		MOOCs	2	EC				
15			Library/Yoga	下人		1			
	I	I	Total	D	23+ EC	30	150	450	600
			III SEN	IEST	ER	1			
16	521301	Core 9	Advanced Molecular Spectroscopy	Т	4	4	25	75	100
17	521302	Core 10	Quantum Mechanics-II	Т	4	4	25	75	100
18	521303	Core 11	Condensed Matter Physics-I	Т	4	4	25	75	100
19	521304	Core 12 Lab 3	Advanced Electronics Laboratory	Р	5	10	25	75	100
20		DSE* 3		Т	4	4	25	75	100
21	_	*NME	Non Major Elective-II	Т	2	3	25	75	100
22	*SLC - II		MOOCs	Т	EC				
23	VEP		Village Extension Programme (3 days)						
24			Library/Yoga			1			
	1	1	Total		23+ EC	30	150	450	600

M.Sc. PHYSICS – PROGRAMME STRUCTURE

	IV SEMESTER								
19	521401	Core 13	Condensed Matter Physics-	Т	4	4	25	75	100
			II						
20	521402	Core 14	Nuclear and Particle	Т	4	4	25	75	100
			Physics						
21	521403	Core 15	Thermodynamics and	Т	4	4	25	75	100
			Statistical Mechanics						
22	521444	Core 16	Project & Viva-voce		8	18	50	150	200
	Total				20	30	125	375	500
		GRAND TOTAL CRI	TIU	90 +				2300	
			GRAND IOTAL CRI		EC				2300

<u>Note:</u> *NME- Non Major Elective Course; *SLC- Self Learning Course; EC – Extra Credit; <u>SC*-Special Course</u>

DSE – Student Choice and it may be conducted by parallel sections.

	Non Major Electives offered to other departments					
Sl. No.	Course Code No.	Title of the Course	No. of Credit	Contact Hours/Week		
1		Analytical Instrumentation	2	3		
2		Imaging : Fundamentals and Applications	2	3		

ELECTIVE COURSES

Sl. No.	Course Code No.	Title of the Course	No. of Credit	Contact Hours/Week
		I SEMESTER		
1.	521501	Numerical Analysis and C-Programming	4	
2.	521502	Basic Concepts of Instrumentation	4	4
3.	521503	Solar Energy Utilization	4	4
		Any one course		
		II SEMESTER		
4.	521504	Modern Optics	4	
5.	521505	Materials and Characterization	4	4
6.	521506	Quantum Chemistry	4	
		Any one course		
		III SEMESTER		
7.	521507	Communication Electronics	4	
8.	521508	Physics of Nanomaterials	4	4
9.	521509	Microprocessor and Instrumentation	4] 7
		Any one course]

			SEMESTER -		1	1	1						
Core		rse code:	CLASSICAL MECHA	NICS	T	Credits: 4	Hours: 4						
	5	21101											
			UNIT I										
Objecti	ive 1	To provide	fundamental concepts and	formulation	on of	classical mec	hanics to the						
		students.											
Lagran	ige and	Hamilton	Equations: Newtonian mec	hanics of s	single	and many par	rticle systems						
(Introdu	uctory a	area); Mecha	nics of particles and mecha	nics of sy	stem o	of particles -	Conservation						
Laws-Conservation of linear and angular momentum-Work energy theorem; Open systems (with													
			s-their classification, Genera										
			- Lagrange's equations for			•							
-	•		D' Alembert's principle – H				•						
-			ication of Lagrange equation		-	-							
			pendulum, linear harmonic o			1							
			ing the Newtonian mechanic		evolu	tion of classi	cal K1&						
Outcon	ne 1		from it. Formulate Lagrangi										
	-		nalyze dynamical problems			1							
			UNIT II	50.4			I						
Objecti	ive 2	To know c	assical mechanics methods a	nd theorie	S.								
			troduction-Hamilton's Princi			rinciple for a	Conservative						
			action-Characteristic Funct										
-	-		rem– Special Transformation										
			Point Transformation -Poiss										
			grange Brackets-Relation b										
			acket with respect to Cano										
			nge's equations.										
		-	ing Hamilton's principle,	character	istic f	unction spec	cial K2 &						
Outcon	ne 2		tions and Poisson and Lagran										
outcon			of the transformations		P. P.								
			UNIT III										
		To demons	trate an understanding into th	e theory o	f relati	vity and incul	cate the						
Objecti	ive 3		in properties of rigid dynami		1 I Cluth	they and mou							
Vinatia	a of o I		Notion: Moments and produ		tio N	I amont of Inc	rtia of a body						
		0	1										
			the origin of coordinate fr										
		-	l axes and Principal Moment		-		• •						
about a Fixed point–Angular momentum of a Rigid Body-Eulerian Angles-Compound pendulum – Euler's equations of motion-Torque free motion of a rigid body-Rotational motion of the earth.													
Euler's	equatio												
			ing how the laws of kinem	-	-								
Outcom	ne 3		mechanics that describes the	•									
			n is an important tool in	n the co	mputei	simulation	of K6						
		mechanica	boales.				mechanical bodies.						

SEMESTER – I

	UNIT IV					
Objective 4	To understand classical mechanical transformations, oscillations and conc	epts.				
U	Problem and Special theory of Relativity: Reduction to the equivalent	<u> </u>				
	problem – Centre of mass-Equation of motion and first integral-classification of orbits – Kepler					
	rse-square law of force-scattering in a central force field – transform					
scattering to laboratory coordinates – Theory of relativity, Equivalence of space and time – The						
	formation – Immediate consequences of Lorentz transformations: contra					
	lation, composition of velocities – The mass of a Moving particle -Mass and					
equivalence.		87				
-	Evaluate the motion of a particle in a single central potential field using	K5 &				
Outcome 4	central-force problem	K3				
	UNIT V					
Objective 5	To investigate the behavior of an oscillating mechanism.					
	tions and Normal modes: Potential Energy and equilibrium – One di	mensional				
oscillator: stable, unstable and neutral equilibrium – Two coupled oscillators – small oscillations in						
normal coordin	nates - normal coordinates and normal modes - General theory of small os	cillations:				
secular equation	on and eigen value equation — Vibrations of a linear triatomic molecule.					
L	Understand the effect of all possible small perturbations to a dynamical	K2,K5				
Outcome 5	system in mechanical equilibrium and to evaluate the normal co-	&K4				
	ordinates by analyzing its vibrations					
Suggested Rea						
Sankara Rao. I	K (2005), Classical Mechanics, Prentice Hall India learning Pvt. Ltd.,					
Haberzett .H. (2021). Classical Mechanics. Lecture notes. World scientific publishing.					
	021). Classical Mechanics. DeGruyter publisher.					
Emam .H. (2	021) .Covariant Physics: From classical mechanics to General relation	tivity and				
	rd university press-1 st Edition.	2				
	021). Modern Classical Mechanics. Cambridge University press-1 st Edition.					
(C. (2022) Foundations of classical Mechanics. Cambridge University press.					
	Online Resources					
http://ion.uwinnipeg.ca/~afrey/FW2021/imech/Idema-MechanicsRelativity.pdf						
https://archive.nptel.ac.in/courses/115/106/115106123/						
	https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/					
K1- Remember		-Create				
	Course designed by Dr.M.Si	vakumar				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)	L(1)	M(2)	L(1)	M(2)
CO2	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)	M(2)	S(3)	L(1)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	L(1)	M(2)
CO4	S(3)	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	L(1)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	L(1)	M(2)
W.Av	3	2.4	3	2.6	2	1	1.8	2.8	1	2

Course Outcome Vs Program Outcomes

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	L(1)	L(1)	L(1)	M(2)
CO2	S(3)	M(2)	M(2)	L(1)	M(2)
CO3	S(3)	M(2)	S(3)	L(1)	M(2)
CO4	S(3)	S(3)	M(2)	L(1)	M(2)
CO5	S(3)	S(3)	S(3)	L(1)	M(2)
W.Av	3	2.2	2.2	1	2

	e code: 102	N	MATH	IEMA	ATIC	CAL	PHY	SIC	S – I	ſ	۲	Cre	edits: 4	Hours	s: 4
521	1102					UNI	TT								
Objective 1	To prov	ovide	e a stro	ong m	ather			unda	tion ir	vect	tor a	inalv	vsis.		
	ysis: Intr													of Gradi	ent.
Divergence, Cu	•						-						-		
- Stoke's Theorem - Gauss's law and Poisson's Equation - Expression for Gradient, Divergence,															
Curl and Laplacian in Orthogonal, Cylindrical and Spherical Coordinates.															
Outcome 1	Student and the					cuss	vect	ors a	nd ve	ctor	field	ls	K1,K2,k	(4	
						UNI	ΤIΙ								
Objective 2	To und														
of a matrix – C	Matrices: Introduction to Matrix – Types of matrices and their properties – Determinant - Rank of a matrix – Cramer's rule - Characteristic equation - Eigen values, Eigen vectors – Adjoint of a matrix – Inverse of a matrix – Diagonalization of Matrices – Cayley-Hamilton's theorem - Problems.														
Outcome 2Student will be able to expl matrices and matrix operation contexts.						-				K3,K4					
UNIT III															
Objective 3	To prov	ovide	e a stro	ong m	ather	natic	al for	unda	tion ir	tens	or a	naly	/sis.		
tensor - Coord Kronecker delt Inner and oute Quotient law –	a - Orden er produc	er of .ct –	tenso Conti	ors - T raction	Frans n of	form a te	ation nsor	i law - Sy	y – Al y <mark>m</mark> met	gebra tric a	aic (and	oper anti	ations o -symme	n Tenso tric tens	rs –
Outcome 3	Student in diffe	nt wi	ill be a	able t	to exp ontex	olain ts.	the	usefu				rc	K2,K4	5	
						UNI	T IV		19	y					
Objective 4	To disc														
Theory of Pro law of probab Poisson Distrib	ility – Ra oution – G	Rando Gaus:	om V s's No	′ariabl ormal	les – Distr	Prol ibuti	babil on.	ity I	Distrib	ution	i -]	Bind			
Outcome 4	Student theory.		ill be	able				ncept	s of p	oroba	bili	ty	K1,K2		
			. .			UNI			. .		-		:		
Objective 5													s in Phys		~•
Integral Transforms: Introduction and Definitions – Fourier Transforms – Cosine and Sine Fourier transforms – Linearity theorem – Parseval's theorem – Fourier Transform of Derivatives – Convolution Theorem – Laplace Transforms – Properties of Laplace transform - Laplace Transform of Derivatives – Convolution or Faltungs Theorem – Inverse Laplace Transform															
Outcome 5	Student transfor	nt w	ill be									ลโ	K2,K4,k		

Suggested Readings:								
Dass, H.K, Rama Verma. (2010). Mathematical Physics. S. Chand and Company Ltd.								
Gupta, B. D. (2010). Mathematical Physics. 4 th Edition. Vikas Publishing House Pvt. Ltd.								
Sathyaprakash. (2013). Mathematical Physics. Sultan Chand.								
Arfken, G. (2000). Mathematical Methods for Physists. 5th Edition, Academic Press.								
Kreyszig, E. (1983). Advanced Engineering Mathematics. Wiley Eastern.								
Online Resources								
https://eprints.ukh.ac.id/id/eprint/278/1/2013_Book_MathematicalPhysics.pdf								
https://books.google.com/books/about/Mathematical_Physics.html?id=								
IzJdPqEn6VYC#v=onepage&q&f=false								
http://ndl.ethernet.edu.et/bitstream/123456789/79541/4/Mathematical%20Physics%20(Gupta).pdf								
K1- RememberK2- UnderstandK3- ApplyK4- AnalyzeK5-EvaluateK6-Create								
Course designed by Dr.R.Sivakumar								

Course Outcome Vs Program Outcomes

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	L(1)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	S(3)	S(3)
W.Av	3	3	2.4	3	2.2	1.2	1.6	3	2	3

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	M(2)	L(1)
CO2	S(3)	S(3)	M(2)	M(2)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)
W.Av	3	2.8	2.6	2.6	2

Core	Course code: 521103	ELECTRONICS	T	Credits 4	: Hours: 4					
	521105	UNIT I		–	T					
Objective 1	To distinguish	different diode characteristics.								
•		oduction to Semiconductor. Intrinsic and ext	rinsic	semicond	uctors- Open					
circuited PN Junction diode – The volt Ampere characteristics - Forward and Reverse bias of diode -										
Characteristics of FB and RB of diode - Zener diode- Gunn diode - Tunnel diode - Photo diode - Schottky										
diode - Laser	diodes <u>-</u> Characte	eristics and Applications.								
Outcome 1	Remembering characteristics	semiconductor Physics and unders of various diodes	tandin	g the	K1,K2					
UNIT II										
Objective 2		sistor biasing and optoelectronic devices in de								
Transistor biasing and optoelectronic devices: Transistor action PNP NPN transistors - Transistor Amplifier - Transistor connections - DC load line – Homo and hetero junction devices - Operating point- Bias stability - Transistor biasing and stabilization - Need for biasing - Methods Transistor biasing - h parameters – Device characteristics, frequency response and its application - Classification of Amplifiers - Power amplifier - Push-pull amplifier - JFET - JFET Amplifier - Biasing - MOSFET - UJT - SCR - DIAC - TRIAC.										
Outcome 2	Understanding		K2							
		UNIT III								
Objective 3	To understa	and the classification of amplifiers.								
amplifier - V Feedback amp Amplifiers- c	to I and I to V co plifier - Transfer ircuits Adder- S	eations: - Operational Amplifier - CMRR - onverter- Op-amp stages - Equivalent circuits gain with feedback - Applications of Op-An ubtractor- Differentiator- Integrator- Schmit r - Active filters: Low, High and Band pass fi	s - Sar np: In t Trig	nple and l verting. N	Hold circuits. Non-Inverting					
Outcome 3	-	esign basic op-amp circuits, particularly vari uits, active filters, signal generators.	ous lir	near and	K4					
		UNIT IV								
Objective 4	To impart fund	amental aspects of digital electronics principl	es to t	he student	ts.					
Sequential circuits, flip-flops, registers and counters: - Sequential Circuits – Flip-Flop – Definition - R-S Flip-Flops – Clocked R-S Flip-Flop – Data Latch or D-Flip-Flop – J K Flip-Flop –Master – Slave J K Flip-Flop – Registers – Shift Registers – Serial In Serial Out shift register, Serial In parallel Out shift register, Parallel In Serial Out shift register, Parallel In parallel Out shift register – Counters – Ring Counter – Ripple Counter – Mod Counters. Classification of memories and sequential memory - ROM, PROM and EPROM principle and operation Read & Write memory - Static RAM, dynamic RAM.										
Outcome 4	Construct sequ	ential circuits, flip-flops, registers and counter	rs.	K3	3,K6					

Objective 5	To give	e advanced knowl	edge about A/D an	d D/A converter	and their app	lications.		
Weighted resis	stor meth od - Volt	od - Binary Lado	heorem - Time di der network – AD y conversion and	C - successive ap	proximation.	Dual slope and		
Outcome 5	utcome 5Construct data convertors and understand the requirements for A/D and D/A converters suitable for different applications.K2,K3,K6							
 Suggested Readings: Albert Malvino, David Bates. (2017). <i>Electronic Principles</i>. McGraw Hill. Choudhury D. Roy, (2018) <i>Linear Integrated Circuits</i>, New Age International Publishers Mehta V. K. (2014), <i>Principles of Electronics</i>, S. Chand and Company. Robert L. Boylestad Louis Nasbelsky. (2014). <i>Electronics Devices and Circuit Theory</i>. New York, NY Salivahanan, S. (2017) <i>Linear Integrated Circuits</i>. McGraw Hill Education 								
Anil K. Maini Sons Ltd.	. (2018).	. Digital Electror	nics Principles, De	vices and Applic	eations, India	, John Wiley &		
Chattopadhyay Publishers; 14 ^t			cs: Fundamentals	and Application	ns, New Ag	ge Internationa		
		. , .	tegrated Electroni		Indian Edition	on.		
Millman & Ha	lkias. (20	017). Integrated E	Electronics, 2 nd Edi	tion.				
	, 0	<i>ital Electronics</i> –0 rs 1,2,4,5 and 6).	Circuits and System	as, New Delhi, T	ata Mc-Graw	Hill Publishing		
Online Resources http://www.electrical4u.com								
https://ocw.mit.edu/courses/6-012-microelectronic-devices-and-circuits-fall-2009/pages/lecture-notes/ https://www.tutorialspoint.com/basic_electrnics/index.htm								
K1- RememberK2- UnderstandK3- ApplyK4- AnalyzeK5-EvaluateK6-Create								
Course designed by Dr. G. Ravi, Dr. M. Ramesh Prabhu								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	L(1)	S(3)	S(3)	L(1)	M(2)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	L(1)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	M(2)	L(1)	S(3)	S(3)	S(3)	S(3)	L(1)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	L(1)	S(3)
CO5	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)	S(3)	L(1)	S(3)
W.Av	3	2.8	1.8	2.2	3	2.4	2.6	2.8	1.4	3

S-Strong (3), M-Medium (2), L-Low (1)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	L(1)	M(2)	S(3)
CO2	S(3)	S(3)	L(1)	M(2)	S(3)
CO3	S(3)	S(3)	L(1)	S(3)	S(3)
CO4	S(3)	S(3)	L(1)	S(3)	S(3)
CO5	S(3)	S(3)	L(1)	S(3)	S(3)
W.Av	3	3	1	2.6	3

Course Outcome Vs Program Specific Outcomes

Core Course code: 521104	ELECTRONICS LABORATORY	Р	Credits: 5	Hours: 10				
Objectives	 To study the basic components in discrete electronics. To exercise the practical usage of devices and circuits employing the discrete components. To understand the Transistor characteristics. To exercise the practical applications of Op-amp. To exercise the logic gates using discrete components. 							
	(Any Fifteen of the following)							
	 Construction of 9V regulated D.C and Percentage of Regulation. Transistor Characteristics – Comm characteristics) – Estimation of Hyl Two stage R.C Coupled transist feedback. Transistor as a switch and Schmitt Monostable multivibrator (Transist Characteristics of a FET. Design of FET amplifier – CS Confi B. Design of FET amplifier – Two sta Characteristics of UJT. Characteristics of SCR. Relaxation oscillator (UJT). Logic Circuits (Discrete componen IS. Transistorized Hartely and Colpitt' I4. Transistor Astable multivibrator. Phase shift audio oscillator (Basic param 17. Push-Pull amplifier (Transistor). Emitter follower (Transistor). Transistor receiver – Single band. Any other experiments of equal sta 	mon en brid par or amj trigger. or). figuration ge. ts). s audion parame heters).	nitter (Input rameters. plifier with a on. oscillator. ter).	and Output and without				
Outcomes	 On successful completion of the course, a s Understand the concept of discrete com Understand the basic operations in elect Understand modulation and demodulat Operate op-amp based simulations. Understand piecewise linear circuit elector 	nponen etronic tion	ts.	0				
Course de	signed by Dr.R.Suba Devi, Dr. M. Rames	h Prab	hu, Dr. R. Y	uvakkumar				

ELECTIVE COURSES SEMESTER – I

DSE	Co	ourse Code: 521501	NUM		L ANAI GRAMI	LYSIS AN	DC-	Т	Crea	lits: 4	Hours: 4
		521501		INU	<u>GRAM</u> Uni						
Objective	e 1	To understa	and the	errors and			n numer	rical me	thods		
summation Newton's	n, lo me	uter arithmer east squares d thod: Error an Secant method	lata fitti nalysis,	ing, eigen error esti	value primation -	roblem, no - Secant m	onlinea nethod:	r systen Error a	ns - Bis nalysis	section i , compa	method, rison of
Outcome	1	Remember a and Newton			error ana	lysis for a	rithmet	ic opera	ations	K1, K	2
					Unit						
Objective	e 2	To learn the	concep	ot of inter	polation	methods					
degree ir	nterp e in	1: - Polynom polation, divi- terpolation –	ided di	ifferences	, proper	rties of a	livided	differe	ences,	Newton	n's divided
Outcome	2	Remember a divided diffe					-	-	/ton's	K1, K2	2, K3
					Unit -	- III //					
Objective	e 3	To apply nur	merical	techniqu	les for di	Ifferentiati	on and	integra	tion		
The Trap Simpson' theory of	ezo s ru diff	itegration an idal and Sim le - Richardso ferential equat er (no derivati	npson on Exti tions -	rules - I rapolation	Error for n, period	rmulae: A lic interpo	An erro	or form Ordina	ula fo ary dif	r Trape ferential	zoidal and equations:
Outcome	3	Understand, Euler's, Taylo					, Simps	on rule,		K2, K.	3, K4, K5
					Unit -	- IV					
Objective	e 4	To understar	nd the c	concept of	f linear e	equations	to the st	tudents.			
Partial Pi	voti of (systems of ling, calculation Gaussian Elin method.	on of in	verse ma	trices, o	perations	count -	The L	U Fact	orizatio	n: Compact

Outcome 4	Understand, analyze and apply Gaussian Elimination, Jacobi method and Gauss-Seidel method.	K2, K3, K4, K5								
	Unit - V									
Objective 5	To impart understanding on the basics of C program and its applicat	ions								
C-programming: - Introduction – Basic structure of C Program – Operators and Expressions – Library functions – getchar Functions and putchar Functions – Control Statements – Arrays and strings – Pointers – Structures and Unions.										
Outcome 5	Remember and understand Basic structure of C Program and control statements	K2,K3,K6								
 Suggested Readings:- Atkinson, K. Han, W. (2011). <i>Elementary Numerical Analysis</i>, Wiley-India, 3rd Edition Balagurusamy, E. (2017). <i>Numerical Methods</i>, McGraw Hill Education. Burden, R.L. Faires, J.D. Burden, A.M. (2016). <i>Numerical Analysis</i> (10th Edition), Cengage Learning. 										
Grewal, B.S. Publishers, 1	Grewal, J.S. (2013). Numerical Methods in Engineering and Scien 1 th Edn.	nce, Delhi, Khanna								
E.Balagurusa	my (2004), Programming in ANSI - C, Tata McGraw Hill publ	ications.								
Online Reso	urces									
https://archive.nptel.ac.in/courses/122/104/122104019/#										
https://onlinecourses.swayam2.ac.in/cec20 ma11/preview										
K1- Remembe	r K2- Understand K3- Apply K4- Analyze K5-Evaluate	K6-Create								
	Course designed by Dr.S.Sudhahar									

		C	Jui se O	utcome	, vs 110	gram	Outcom	00		
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	S(3)	L(1)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	M(2)	L(1)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	S(3)	S(3)	M(2)	S(3)
W.Av	3	2.8	2.8	2	2	1	2.2	2.8	1.6	3

Course Outcome Vs Program Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	L(1)	M(2)	S(3)
CO2	S(3)	S(3)	L(1)	M(2)	S(3)
CO3	S(3)	S(3)	L(1)	S(3)	S(3)
CO4	S(3)	S(3)	L(1)	S(3)	S(3)
CO5	S(3)	S(3)	L(1)	S(3)	S(3)
W.Av	3	3	1	2.6	3

Course Outcome Vs Program Specific Outcomes

DSE	Course Code: 521502			NCEPTS OF ENTATION	Т	Credit: 4	Hours: 4
			Un	it I	1		
Objective 1	The main objection			is to impart various	aspect	s of basic	concepts of
Static chara	acteristics of Inst	truments	- Types of	errors - Static Perforn	nance l	Parameters	- Accuracy,
				d Band - Backlash - I			
Matching. M	lathematical descr	ription of	data distribut	ion function - function	is - pro	pagation err	ror Analysis
of data - sys	tematic error. Stati	ic error- S	Statistical ana	lysis of error – Probab	ility of	errors.	
Outcome 1	Understand an instrumentation			mental principles beh	ind th	e methods	of K2
			Uni				
Objective 2			-	aracteristics of instrum			
•			· · · · · · · · · · · · · · · · · · ·	surements) - Instrum		•	•
•	-	-	•	l - First order - Second		•	
-		- Harmon	nic, Response	e to step input and t	ransier	nt and rand	om input -
-	on networks.		ູ່ເຄັ	1.00			
Outcome 2	Understand the	e dynamic		cs of instruments.			K2,K3
	1		Uni				
Objective 3			-	electronic circuits and ucers: Electrochemica	1.		
transducers	- Digital transdue equency Domain -	cers: Fre - Vibratin	equency Dom og String Trar	ransformer capacitive nain, Electromagnetic sducers – binary code d to process measureme t IV	Frequ s – dig	ency Doma ital encoder	ain - Opto-
Objective 4	To understand	the physic	cal principle	of electronic based me	asurem	nent.	
Transduce				ensing elements : Mar			Transducers,
				ment – Temperature			
Methods B	simetallic Thermo	ometer -	Liquid in	Glass Thermometer	· – R	TDs – Tl	hermistor -
Thermocoup	oles – Pyrometers -	- Pressure	Thermomete	ers Low temperature th	ermon	neter-Semic	onductor IC
sensing -	Magnetic therm	nometer	Electrical	Methods: Electrical	Resis	stance The	ermometers-
semiconduc	tor temperature ser						
Outcome 4	Understand the	e salient fea					K2
			_	it V			
Objective 5		<u> </u>	-	nd digital transducers		.	
				leasurement: primary			
				ng Vane Type - Lob			
			-	cy Analysis of No		-	-
	-	-	• •	tret Microphone - Pho			
	0 0		•	tal Type and application	-		c, properties
				Transducers - Electro			
Outcome 5	Knowledge of i	identifica	tion, design a	nd operation of instru	mentat	ion.	K1,K2,K3

Suggested Readings:

Nakra, B. C. Chaudhry, K. K. (2011). *Instrumentation Measurement and Analysis*. New Delhi: TMH. Sawhney, A. K. (2015). *A Course in Electronics Measurements and Instrumentation*, Dhanpat Rai & Co. (P) Limited.

Gooneratne, C. P. Li, B. Deffenbaugh, M. Mollendick, T. (2018). *Instruments, Measurement principles and communication Technologies for Downhole Drilling Environments*. Springer.

Ghosh Arun, K. (2014). Introduction to Transducers. PHI Learning Pvt. Ltd

Rajput, R. K. (2016). *Electrical and Electronics Measurements and Instrumentation*. S Chand & Company

Online Resources

https://instrumentationtools.com/static-and-dynamic-characteristics-of-an-instrument/ https://circuitglobe.com/transducer.html

https://www.brainkart.com/article/Digital-Transducers 12767/

K1- Remember	K2- Understand	K3- Apply	K4- Analyze	K5-Evaluate	K6-Create
			Course design	ned by Dr. M. Ra	umesh Prabhu

Course Outcome Vs Program Outcomes

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	M(2)	S(3)	M(2)	L(1)	L(1)	M(2)	S(3)	L(1)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	L(1)	L(1)	M(2)	M(2)	L(1)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	S(3)	S(3)	M(2)	S(3)
W.Av	3	2.6	2.8	2	1.6	1/2	2.2	2.8	1.6	3

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	L(1)	M(2)	S(3)
CO2	S(3)	S(3)	M(2)	M(2)	S(3)
CO3	S(3)	M(2)	M(2)	S(3)	S(3)
CO4	S(3)	S(3)	M(2)	S(3)	S(3)
CO5	S(3)	S(3)	M(2)	S(3)	S(3)
W.Av	3	2.6	1.8	2.6	3

DSE Course 521		SOLAR ENERGY UTILIZATION	Т	Credits: 4	Hours: 4
		Unit – I			
Objective 1	To im	part fundamental aspects of solar energy utilization to the	e student	5.	
Heat Transfer		diation Analysis: Conduction Convection and Radiatic			t the earth's
surface - Deter	minatio	n of solar time – Solar energy measuring instruments.			
Outcome 1	List th	e measuring instruments for solar energy and its analysis			K1
		Unit –II			
Objective 2		ow the most important factors that determines the cost-ef			
	•	rsical principles of conversion of solar radiation into hing collector systems – Thermal performance evaluation		1	rs - General
Outcome 2		in the principles of Solar radiation and their thermal perfo			K2
		Unit – III			·
Objective 3	To un	derstand the basic concepts in convection and radiation			
Solar Heaters Solar cooling s	• •	of solar water heater - Solar heating system - Collectors	s and sto	rage tanks – S	olar ponds –
Outcome 3	-	ss the concepts and principles of solar water heaters			K6
	1	Unit –IV			I.
Objective 4	To ace	quire basic knowledge on solar energy conversion			
and Thermo-ei texturization, d Outcome 4	iffusion	, antireflective coatings, metallization. ine the energy conversion types in solar	ferent uj	prouenes on	K4
		Unit – V			
Objective 5		part the knowledge of nanomaterials in energy storage de			
quantities - Cland nanomater	assificat ials in fu lectroly Identi	hergy Storage Devices Batteries- Basic Battery Theo ions of Batteries- Advantages of Batteries for Bulk ener- nel cell technology - High and low temperature fuel cells tes, ceramic catalysts - Use of nano technology in hydrog fy the basic concepts of nanomaterials in batteries. Evalu- y storage materials	rgy stora , cathode en produ	ge. Use of nate and anode real action and stora	nostructures actions, fuel age.
Textbooks and					
Kothari, D.P. &	& Singal	, K.C. (2011). Renewable Energy Resources and Emergin	ıg Techn	ologies. PHI le	earning.
Leonid A. Kos	yachenk	o. (2015). Solar Cells New Approaches and Reviews. Inte	ech.		
Rai, G.D. (201	1). Solar	· Energy Utilization. Delhi: Khanna Publishers.			
	·	Conventional Energy Sources, 5 th Edn. Khanna Publisher	rs.		
Sukhatme, S.P.	. (2011).	Solar Energy – Principles of Thermal Collection & Stor	age. Del	hi: TMH	
https://science.ost	athuniv.ac i.gov/-/me	.in/page_images/pdf/courseware_eee/Notes/CE3/BEE043%20SOLA edia/bes/pdf/reports/files/Basic_Research_Needs_for_Solar_Energy_	Utilization	<u>1_rpt.pdf</u>	*
K1- Remember	: K2- U		5-Evalua		Create
		Course Designed b	y Dr.M.S	ivakumar and D	r.R.Suba Devi

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	L(1)	S(3)	S(3)	S(3)	S(3)	S(3)	L(1)	S(3)	S(3)
CO2	S(3)	L(1)	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	S(3)	M(2)
CO3	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)
CO4	S(3)	L(1)	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)
CO5	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)	L(1)	M(2)	S(3)	S(3)
W.Av	3	1.4	2.8	2.6	3	3	2	1.8	3	2.4

Course Outcome Vs Program Outcomes

Course Outcome Vs Program Specific Outcomes

CO/POs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	S(3)	S(3)	S(3)	M(2)
CO2	S(3)	S(3)	L(1)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	M(2)
CO4	M(2)	M(2)	M(2)	S(3)	L(1)
CO5	M(2)	S(3)	M(2)	M(2)	S(3)
W.Av	2.4	2.8	2.2	2.6	2.2

S-Strong (3), M-Medium (2), L-Low (1)

SPECIAL COURSE

Special Course	Course Code: 521106	SKILL DEVELOPMENT	T	Credit: 3	Hours:3
		Unit I			
Objective	1 To provide f	undamental principles and concepts in basic sk	ills to	the learners	
Personalit	y Skill: Phonetic	s and Grammar- Listening, Conversation, Read	ing, '	Writing and	
Presentatio	on - Group Discus	sion - Concept of Achievement-Resume Writin	ng – V	Vriting Formal	Letters -
Inter- perso	onal relations - D	eal with complex feelings - Confidence buildin	g- Bo	dy language- (Conflict -
types and r	resolutions - Emo	tional intelligence – Dressing- Do's and Don'ts	-Ethio	cs and Social	
Responsive	eness-Attitude- N	ature, Formation and Change- Decision Makin	g - Te	am Work- Co	ncept of
Achieveme	ent.				
Outcome	1 Develop the	r skills in various aspects.			K2
		Unit II			
Objective	2 To felicitate	the learners to understand the technical skills			
Fechnical	Skill – I (Electric	al): Concepts of Electricity – Wiring, Earthing	, Trar	nsformers and	Motors-
Wiring Dia	gram – Wiring fo	r Household – Working of Electrical Appliance	es - N	laintenance.	
Outcome 2	2 Improve the	r personality skill.			K4,K5
		Unit III			,
Objective	3 To exercise	the communicative English to the students			
Technical		rs & Automation): Transducers – Transistors	– Pho	todiodes – Co	lour
Codes – Co	olour Sensor – IR	sensor - Digital Circuits - Hydraulic - Pneum	atic –	Valves and ac	ctuators –
	r Automation.				
Outcome 3	3 Learn to us	e physics ideas for variety of society applicatio	ns.		K4
		Unit IV			
<u>Objective</u>		the personality skill to the students	М	X 7°1	1 17
		ng of Materials): Indentation Hardness testing	-		-
		o and Nano hardness testing- Etching- Wet and			
		rticle testing- Ultr <mark>aso</mark> nic testi <mark>ng</mark> - Radiography-	Acol	istic emission	testing-
Eddy curre Outcome		echnical skills in day to day life activities.			K2,K5
Outcome -	+ Apply lie i	Unit V			K2,K3
Objective	5 To provide	the additional skill to the students			
0		ifacturing of Materials): Phase Diagram- The	ermal	Processes- An	nealing-
		milling- 3D printing-Introduction- Continuous			
Outcome :		ple with good communicative English.			K2,K4
	Readings:)
00	e	H. Schoemaker. (2002). Winning Decisions.	Doub	leday agency	of Randor
House Inc.			Douo	ieuuj ugenej	
	attacharva. (2008)	. An Approach to Communication Skills. New	Delhi	: Dhanpat Rai	& Co.
	•	munication Today & Tomorrow. Jaipur: Sublin		1	
00	· · · ·	<i>rization</i> , Wiley Inerscience, John Wiley and So			5
		nce and Engineering: A first course, PHI Lean			
-		n to Physical Metallurgy –McGraw-Hill Book	-		
	,	, 0,	г	5	

Online Resources									
https://www.zwickroell.com/industries/materials-testing/									
https://www.coursera	https://www.coursera.org/articles/communication-skills								
https://idoc.pub/dow	nload/material-science	e-and-engineeri	ng-v-raghavanpdf	-d477e0k10y42					
	/certificates/profession	nal-certificate/ri	tx-communication	<u>n-skills</u>					
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
	Course designed by Dr. M. Ramesh Prabhu								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	M(2)	M(2)	L(1)	L(1)	M(2)	L(1)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	M(2)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)
W.Av	3	3	2.8	2.8	2.4	2	2.6	2.4	3	3

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	L(1)	M(2)	L(1)	M(2)
CO2	S(3)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	S (3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.Av	3	2.4	2.8	2.2	2.8

			SEMESTER - II			
Core		se code:	QUANTUM MECHANICS - I	T	Credits:	Hours: 4
	52	21201	UNIT I		4	
Object	tive 1		n objective of this paper is to impart knowledge o mechanics to the students.	n the	fundamental	aspects of
 Phys function application Comm wave 	ical intended on and e ations – utator - function	erpretation rigen value Wave par - Expectat n – Ehren	eview of foundations of quantum mechanics - Post of wave function and probability current density - es – Degeneracy – Expansion coefficient – Heisenb rticle duality – Schrodinger equation – both time of ion values – Stationary states and its properties fest's theorem –Relationship between space and ensional problems – Free particle.	– Typ erg U depen – Adr	es of Operato ncertainty pr dent and ind nissibility co	ors – Eigen inciple and ependent – ondition on
Outco	me 1		er the basic concepts of quantum mechanics and un to learn the quantum mechanics	dersta	ind the	K1&K2
			UNIT II			1
Object	tive 2		the brief review of foundations of quantum m formalization of quantum mechanics.	lechan	ics and to e	explain the
problem of barr Spheric Rigid	m- Part rier pen cal sym rotator	icle in a be etration (o metry sys – Applica	Problem: Physical application of Schrodinger of ox –quantum mechanical tunneling –Rectangular p - decay) – Particle in infinitely deep potential we tems – Particle in a central potential - Three dime tion to diatomic molecules – Hydrogen atom – ion – Discussion of bound states and parity.	otenti 11- Sq nsiona	al barrier – A uare potentia al harmonic o	Application al barrier – oscillator –
Outco	me 2		nds the propagation o <mark>f</mark> a particle in a simple one din and spherically symmetric potential.	mensi	onal	K2
			UNIT III			
Object	tive 3	To evolv	e the eigen value problem based quantum theory ar	nd repr	resentation th	neories.
matrix unitary oscillat	- Hilbe spaces	ert space – s – comple lution usir	es: Vector representation of states – transformation Normalized and Orthogonal wave function –Ortho eteness – closure - Dirac's ket and bra vectors – ag ladder operator and matrix representation - S	onorm - One	ality- inner p dimentional	roduct and Harmonic
Outco	me 3		rious representation theories which help in the dete or at a previous or future time	rmina	tion of the	K3

		UNIT I	V					
Objective 4	To provides accurate de	scriptions for a	ppropriate pro	blem solving techni	ques.			
case – Energy Variation metho	Methods: Time independent correction – Zeeman ef od – Ground state of heli- e – tunneling through a b	fect without el um atom – Gro	ectron spin – ound state of D	Stark effect in hy euteron – W.K.B a	drogen atom –			
Outcome 4	Apply perturbation theo	ry and analyze	required probl	em solving methods	s K3 & K4			
		UNIT V	V					
Objective 5	To understand the nature subatomic level.	e and behavior	of matter and	energy on the atomi	c and			
Fermi golden rule – Periodic perturbation – Harmonic perturbation – Adiabatic and sudden approximation. Spontaneous emission – Stimulated emission – Einstein's A & B coefficients – Semi – classical and quantum theory of radiation – Rayleigh and Raman scattering – Selection rules – forbidden transitions. Output Understand the application of time dependent perturbation theory in								
Outcome 5	subatomic and atomic le				K2,K3 on &K5			
P.M. Mathew Delhi Aruldhas (200 A.B. Gupta (2 David J. Gri Edition. V.K.Thankap Delhi. VA Fock (20) AjoyGhatak a Fifth Edition. L. Schiff (19) SatyaPrakash Delhi. Online Resource <u>https://www2</u>	R.Velusamy (2015), Qua s and K.Venkatesan (20 08), Quantum Mechanics 2015) Foundation of Qua ffiths (2015) Introduction pan (2018) Quantum Me (2018) Fundamentals of Qua and S. Lokanathan (2017) 68) Quantum Mechanics and Swati Saliya, Ked	10), A text bo — PHI Learni ntum Mechanic on to Quantur chanics — Nev untum Mechani 2) Quantum M , McGraw Hill arNath Ram (meru/lectureno ocs/QM/lect17.	ok of Quantur ng Private Lim cs, Books and A n Mechanics, wAge Internat: cs-, 2 nd Ed., dechanics Theo 2010) Quantu tes/Quantum% pdf	n Mechanics , McC nited, New Delhi. Allied (P) Ltd., Kolf Pearson Education ional Publishers - 4 ory and Application m Mechanics , Na	Graw Hill, New kata. 1 Ltd., Second th Edition, New <i>ns</i> , McMillan, 1th& Co., New			
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create			
			Co	urse designed by D	r.K.Suda Devi			

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	L(1)	L(1)	M(2)	S(3)	L(1)	L(1)	S(3)	L(1)	M(2)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	S(3)	L(1)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	L(1)	M(2)	L(1)	M(2)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	L(1)	S(3)	L(1)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	L(1)	S(3)	L(1)	M(2)
W.Av.	3	2.6	2.6	2.6	2.2	1	1.2	2.8	1	2

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	L(1)	L(1)	L(1)	M(2)
CO2	S(3)	S(3)	M(2)	L(1)	M(2)
CO3	S(3)	M(2)	M(2)	L(1)	M(2)
CO4	S(3)	S(3)	M(2)	L(1)	M(2)
CO5	S(3)	S(3)	M(2)	L(1)	M(2)
W.Av	3	2.4	1.8	1	2

S-Strong (3), M-Medium (2), L-Low (1)

Core		se code: 21202	MATHEMATICAL PHYSICS – I	I	Τ	Credit	ts: 4	Hours: 4	
	52	1202	UNIT I						
Objecti	ive 1	To elabor	ate the information on complex variab	ole.					
			nplex functions and variables – Ar		func	tion - (Cauch	v-Riemann	
-			undamental theorem - Cauchy's Inte	•				•	
		•	Conformal Mapping - Singularities -	•					
			ue theorem.						
<u> </u>		~	vill be able to apply complex variabl	les to s	olve	problem	S		
Outcon	ne I		plex functions and contour integrals		-	L	K	.3,K4	
		I	UNIT II				I		
Objecti	ive 2	To under	tand the applications of partial differe	ential e	quatio	ons.			
			ifferential Equations (PDEs) and C				ns: Ii	ntroduction	
of PDE - Method of separation of variables – Heat equation (one and two dimensional) – Laplace									
and Poisson equation - Wave equation (one and two dimensional) – Green's Function – Sturm-									
Liouville theory – Gram-Schmidt Orthogonalization process.									
		Student will be able to find solution to partial differential							
Outcon	ne 2	equations by separating the variables. K2,K4,K5							
UNIT III									
Objective 3To elaborate the information on special functions such as Legendre and Bessel differential equations.									
- Rodrig	gue's fo ting fun	ormula – (ortion - Rec Student v	uation: Legendre polynomial - Gener orthogonality relation; Bessel's different urrence relations - Rodrigue's formul vill be able to illustrate the properties of	ential e la – Ort of beta	equati hogo and §	on: Bes nality re	sel po	olynomial -	
outcon		functions	and Legendre and Bessel differential	equation	ons.				
		- 1	UNIT IV	1.1	1 *				
Objecti			about the mathematical aspects of Her			-			
-			ermite differential equation: Hermite						
			Rodrigue's formula – Orthogonal						
-	-		omial - Generating function - Recurr	rence r	elatio	ns - Ro	urigue	s formula	
- Offic	ogonan	ty relation.	vill be able to find solution correspo	ondina	to U	[amaita			
Outcon	ne 4		erre differential equations.	onung	ιο Π	lemme	K2,	K4,K5	
		and Lagi	UNIT V						
Objecti	ive 5	To know	about the concepts of group theory in	mathe	matic	al physi	cs.		
Group Theory: Definition of group – Sub groups - Cyclic groups and abelian groups -									
Homomorphism and Isomorphism of groups – Classes - Symmetry operations and symmetry									
elements – Representations of groups: Reducible and Irreducible – Proof of the Orthogonality									
			es for simple molecular types (C_{2v} and						
Outcon		Student	vill be able to learn about group theo llographical concepts.				K2,		

Dass, H.K, Rama Verma. (2010). *Mathematical Physics*. S. Chand and Company Ltd. Kreyszig, E. (1983). *Advanced Engineering Mathematics*. Wiley Eastern.

Gupta, B.D. (2010). Mathematical Physics. 4th Edition. Vikas Publishing House Pvt. Ltd.

Sathyaprakash. (2013). Mathematical Physics. Sultan Chand.

Albert Cotton, F. (2009). Chemical Applications of Group Theory. 3rd Edition. Wiley India (P.) Ltd.

Online Resources

https://books.google.com/books/about/Mathematical_Physics.html?id= IzJdPqEn6VYC#v=onepage&q&f=false

https://www.schandpublishing.com/books/higher-education/physics/mathematical-

physics/9789355012531/

https://www.cambridge.org/highereducation/books/mathematical-methods-for-physics-and-engineering/FC466374D5B94E86D969100070CA6483#overview

K1-Remember	K2-Understand K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
	Course designed by Dr.R.Sivakumar							

Course Outcome Vs Program Outcomes

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	M(2)	S(3)	S (3)	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)	S(3)
W.Av	3	3	2.4	3	2.4	2	2.6	3	2.2	3

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	M(2)	L(1)
CO2	S(3)	S(3)	M(2)	M(2)	M(2)
CO3	S(3)	S(3)	M(2)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	M(2)	S(3)
W.Av	3	3	2.4	2	2.2

			II Semester							
Core	Cou	rse code:	ELECTROMAGNETIC THEORY	Τ	Credits:	Hours: 4				
	52	21203			4					
			UNIT I							
Object	ive 1	To introduc	e basic fundamental concepts related to electromag	netic 1	theory.					
Electro	ostatics,	Magnetosta	tics and Electromotive Force:Columb's law - G	auss's	law in diffe	erential form-				
Applica	ations of	Gauss's law	- Poisson's equation - Laplace's equation - wor	k and	energy in ele	ectrostatics -				
energy	energy of a point charge distribution - Dielectrics and Conductors Induced dipoles - Gauss's Law in the									
presenc	presence of dielectrics. Lorentz force- Biot-Savart Law - divergence and curl of B -Ampere's Theorem-									
Electro	magnetic	e induction -	· Comparison of magnetostatics and electrostatic	s - N	lagnetic vec	tor potential.				
Ohm's	Law – e	electromotive	force - Faraday's Law - induced electric field -	induct	ance -energy	in magnetic				
field.										
Outcon	m a 1	Remember	and understand the fundamentals of electro and ma	igneto	statics using	K1				
Outcon	ne i	Ampere, Ga	auss and Ohm's Law.							
			UNIT II							
Object	ive 2	To impart k	nowledge on the basics of electric and magnetic fie	elds.						
Maxwe	ell's Equ	ation and P	ropagation of Electromagnetic Waves: Maxwell	's equ	ations – Poyr	ting theorem				
– Wav	e equati	on in terms	of scalar and vector potential - Transverse na	ture o	of electromag	gnetic wave-				
Conser	vation of	energy and	momentum – Displacement current from continuity	y equa	tion. Propaga	tion of plane				
electror	nagnetic	waves in (a) free space, (b) Isotropic and Anisotropic no	on-con	ducting med	ium and (c)				
conduct	ting med	ium-skin dep	th- Polarization of electromagnetic waves.							
Outcon	na ?	Clarify the	relations using Maxwell's equation, free spa	ce, is	otropic and	K2				
Outcon		anisotropic	medium.							
		1	UNIT III							
		To develop	a solid foundation in the analysis and applica	ation of	of electromag	gnetic fields,				
Object	ive 3	Maxwell's	equations and Poynting theorem.							
			metic Waves: Boundary conditions at the surface of							
			waves at the interface of non-conducting media –							
			s at the interface between two dielectric media	-Brew	ster's law a	nd degree of				
polariza	ation -To	tal internal r								
Outcon	ne 3	Evaluate th	e fields at the boundaries of the medium and its app	olicatio	ons.	K6				
		1	UNIT IV							
Object			familiar with propagation of signal through transm							
	Dispersion and Scattering of EM Waves: Normal and Anomalous dispersion – Dispersion in Gases –									
Experimental demonstration of Anomalous dispersion in gases- Solids and Liquids - Clasusius Mossotti										
			- scattering and scattering parameters - Theory	of sc	attering of e	e-m waves –				
Polariza	ation of s	scattered ligh	t – Coherence and incoherence of scattered light.							
		1				_				
Outcor	ne 4	Deduce the	coherence and incoherence scattering of light and i	its app	lications.	K4				

	UNIT V								
Objective 5	Objective 5 To acquire the knowledge about the plasma physics and waves.								
Plasma Physi	Plasma Physics: Introduction - Conditions for plasma existence - Occurrence of plasma - charged particles in								
uniform const	ant electric field, in homogeneous magnetic fields, simultaneous homogeneous	electric and							
magnetic field	s, in nonhomogeneous magnetic fields - Magnetohydrodynamics - Magnetic confin	ement -Pinch							
Effect-Instabi	ities -Plasma waves.								
Apply the dynamics, effect of homogeneous, non-homogeneous fields and K3									
Outcome 5	tcome 5 occurrence of plasma wave theory.								
	Explain the generation of microwaves such as Klystron, and Magnetron	K5							
Suggested Re	adings:								
Satya Prakas	h. (2016). <i>Electromagnetic Theory and Electrodynamics</i> . KedarnathRamnath & Co.								
Griffith, D. J	. (2013). Introduction to Electrodynamics. Pearson Education Ltd4th Edn.								
Akira Ishima	ru. (2017). Electromagnetic wave propagation, Radiation, and Scattering. IEEE Pres	ss – 2ndEdn.							
Jian-Ming Ji	n. (2015). Theory and Computation of Electromagnetic Fields. John Wiley & Sons.								
Chopra and A	Agarwal. (2010). Introduction to Electromagnetic Theory. K. Nath& Co., Meerut								
Online Resou	rces								
	lasma-universe.com/pinch/								
-	rown.edu/research/labs/mittleman/sites/brown.edu.research.labs.mittleman/files/uploads/lec	ture13_0.pdf							
https://pubs.aip K1-Remembe	https://pubs.aip.org/aip/adv/article/7/1/015018/240342/On-the-propagation-of-electromagnetic-waves-in K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create								
K1-Kellieliide	Course designed by Dr.N								
	Course designed by D1.1	1.01Varumai							

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	M (2)	S (3)	S(3)	S(3)	S(3)	M (2)	S(3)	S(3)
CO2	M(2)	S(3)	L(1)	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	M(2)
CO3	S(3)	M(2)	L(1)	S(3)	S(3)	S (3)	M(2)	S(3)	M(2)	M(2)
CO4	S(3)	L(1)	L(1)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)
CO5	L(1)	M(2)	M(2)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
W.Av	2.4	2.2	1.4	2.8	2.6	2.6	2.4	2.4	2.8	2.4

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	M(2)	S(3)	S(3)	M(2)
CO2	L(1)	S(3)	L(1)	M(2)	S(3)
CO3	M(2)	S(3)	S(3)	M(2)	M(2)
CO4	L(1)	S(3)	M(2)	S(3)	S(3)
CO5	M(2)	S(3)	S(3)	M(2)	S(3)
W.Av	1.4	2.8	2.4	2.4	2.6

Core	Course Code: 521204	ADVANCED PHYSICS LABORATORY	Р	Credits: 5	Hours: 10
Objectives		 The main objective of this practical papt training in various advanced analytical ex To give basic knowledge on spectrometer to the students. To give a basic knowledge on Young students. To find the susceptibility of solid and liquid To give the basic knowledge on conservation of the students is a spectra of the student of the susceptibility of solid and liquid to the student of the basic knowledge on the student of the susceptibility of solid and liquid to the student of the susceptibility of solid and liquid to the student of the basic knowledge on the student of the susceptibility of solid and liquid to the student of the student of	perimer and 's mo aid san	ents to the stu microscope dulus experin nples. growth us	idents. experiments ment to the
		(Any Fifteen of the fo	ollowi	ng)	
		 Alignment of Michelson's Interf observe concentric circular fringes Measurement of the wavelength using circular fringes using Michel Study of fringes of equal inclinat Na lamp using Michelson Interfer Ultrasonic Interferometer – calcus sound through different liquid met X-ray Powder diffraction - Deter indexing lattice planes Hall Effect – Mobility and Hall co Susceptibility by Guoy's method. Susceptibility by Quincke's method Susceptibility of liquids – Hollow Young's modulus – Cornu's mething Ultrasonic interferometer-calculat of the given liquid Electron spin resonance spectromed Magnetic Hysteresis loop tracer. Determination of Plank's constant e/m by Thompson's oil drop method e/m by Thompson's oil drop method G.M. Counter - probability, Abson 	s of He elson I tion a comete ulate t dia minationstant od. prism od. prism od. air weo te the eter. t using d. aod.	e-Ne Laser at nterferometer and equal thic r. he velocity of ion of cell pa t determination – Spectromet dge. adiabatic cor	nd Na lamp : ekness using of ultrasonic arameter and on. ter. mpressibility paratus.

Outcomes	 Understation Understation Understation Demonstation 	nd the basic nd simple cond nd the concorrate the Mil	principles of advo oncepts to demon epts of Plank's co	student will be abl vanced physics exp strate an experime onstant using photo n's oil drop metho tracer	periments. ent. ocell apparatus		
K1-Remember	K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create						
Cour	rse designed by Di	R.Suba De	evi, Dr. M. Rame	esh Prabhu, Dr. H	R. Yuvakkumar		

			SEMESTER – II							
DSE	Cou	rse Code:	MODERN OPTICS	Τ	Credits:	Hours: 4				
	5	21504			4					
		1	Unit –I							
Object	ive 1		e light as an electromagnetic field as it arises	s fro	om first p	rinciples in				
		Maxwell's e								
	-		and Optical Materials: Classification of op		1	· 1				
		1	refractive index and dielectric constant – Opti			-				
			tor, glasses, metal, molecular materials, doped	-	/	d insulator				
			hysics in the Solid state, crystal symmetry, el							
			tate, delocalized states and collective excita							
		-	dense optical medium - Atomic oscillator -							
			e Kramers–Kronig relationship - Dispersior							
Birefri	0		representation of polarization, Jones vector, Jones							
orthogo	onal po		eflection and refraction at a plane boundary – Fres			•				
Outcor	me 1		ng the physical aspects of polarization and diffract	ion a	ind	K1,K2				
		acquire an in	troductory knowledge of non-linear optics							
	Unit – II									
Object	tive 2	-	e reflection and transmission of light at a dielect	tric s	surface, lea	iding to the				
Eveiter	na Da	Fresnel equ	A ALASIAFFALINI FRANCE U	4	Ence Ereit	iona of light				
	Excitons: Basic concept - Free excitons in external electric and magnetic fields - Free Excitions at light densities - Frenkel excitons - Luminescence: Light emission in solids - Interband luminescence - Direct									
			ials - Photoluminescence: Excitation and r							
		U 1	scopy - Electroluminescence: General Principles			•				
		-	le laser - Spectral scanning and Separation by option							
in bioir	-		ie faser - Speetral scalining and Separation by opti-	car p	Toperty - P	applications				
III OIOII	maging		ig the concepts of exciton and analyzing the vario	11s 11	minous					
Outcor	me 2	spectra	is the concepts of exciton and analyzing the vario	ub 10	iiiiiious	K1				
		speeda	Unit – III							
Object	ive 3	To study the	e polaritons and polarons using quantum theory							
			t Propagation: Electromagnetism in dielectrics –	Elec	tromagneti	c fields and				
			omagnetic waves – Quantum theory of radiative							
			ntum transition rates, selection rules – Basic conce							
and pol				1	1					
Outcon		Utilization o	f first principles in Maxwell's equations.			K1,K3				
		I	Unit – IV		I	,				
Object	tive 4	To grasp the	knowledge about nonlinear optics							
		• •	l origin of optical nonlinearities - Non resonant an	d res	sonant no	onlinearities				
	-	•	earities - Non liner frequency mixing - Cr			y - Phase				
matchin			on linear media - Harmonic generation, mixi	•						
	ltiphon		ses - Two-photon absorption - Saturated	-	-					
Rayleig	gh, an	d Raman so	cattering - Stimulated Raman effect - Hyper							
			ing - Self-focusing and self-phase modulation -							
		ementary idea	• • •			-				
Outoo	mal	Constructing	Knowledge about reflection and transmission of	of lig	ght at a	K1				
Outcon	me 4	dielectric sur	rface, leading to the Fresnel equations.							

		I	U nit – V					
Objective 5	To understand the c	ptical desig	n, Fourier optics	and holography				
transforms - I Image forming Fraunhofer, Fo lens - Optica	mpulse response trar g systems - Coheren ourier) - Holographic	asfer function t and incoher techniques a urces (LED,	- Scalar diffractio ent imaging - Spar nd applications - F	sion of geometrical op n, spatial and tempora tial filtering - Hologra ourier transforming pr detectors and optical,	l coherence - phy (Fresnel operty of thir			
Outcome 5 Observation about holographic techniques and gaining knowledge about optical communication sources K2,K3,K5								
-	hard (2017) Optics M	· ·	-	Systems, 1st Edition, Classification, 1st tical Instruments, 1st	-			
Press.Gerhard, (· · · · · · · · · · · · · · · · · · ·) Tunuumeni	uis unu busic Op	iicai Instrumentis, 1	Edition, CKC			
Izuka, K. (200	8) Engineering Optic	s, Springer V	erlag.					
Roshan Aggar	wal, L. (2018) Introd	uction to Opt	ical Components 1 ^s	^t Edition, CRC Press.				
Yu Kulchin, I Press.	N. (2018) Modern O	ptics and Ph	otonics of Nano- a	and Microsystems, 1 st	Edition, CRC			
Online Resou	rces							
	hysics.utoronto.ca/~p m/disciplines_bk/997		•	*				
K1-Remember	K2-Understand	K3-Apply			K6-Create			

Course designed by Dr.N.Anandhan

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	S(3)	S(3)	L(1)	M(2)	M(2)	M(2)	S(3)
CO2	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)	L(1)	L(1)	M(2)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	L(1)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)									
W.Av	3	2.6	2.6	2.6	3	1.6	2.4	2.6	2.6	3

Course Outcome Vs Program Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	S(3)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	L(1)
CO4	S(3)	S(3)	M(2)	S(3)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.Av	3	2.6	2.8	2.6	1.8

DSE		se Code:	MATERIALS AND CHARACTERIZATION	T	Credits: 4	Hours: 4			
	52	21505							
			Unit -I						
Objec		essential	t knowledge about crystal structures, various crystal characterization techniques						
symme Nuclea metho	etry – S ation - I ds – Hi	Solution –	rtance of crystal growth – Classification of crysta Solubility, supersolubility – Expression of supersatura rature solution growth: Slow cooling, solvent evapora ture solution growth: Flux growth – Principles of flu Ielt Growth: Bridgman technique – Czochralski technic	ation tion 1x g1	– Miers T and temper	-C diagram – ature gradient			
Outcome 1Remember, understand and analyze crystal symmetry, nucleation, Bravais lattice, Bragg's law and Miers TC diagram, solution, gel, melt and vapor growth techniques.K1, K2, K3, K4, K6									
			Unit - II						
Objec	ctive 2	To unders	and the basic principles, methods and techniques of na	nom	aterials				
Prepar dimen – Quar	ration: I sional (ntum w	Polyol route 2D) - Three ire - Quante	ence and nanotechnology – Need for nano –Top dowr – Colloidal precipitation - Types of nanomaterials: dimensional (3D) nanostructured materials - Special I um well - Magnetic NPs - Carbon Nanomaterials – Na ement in Quantum Dots.	One Nanc	dimensiona structures:	l (1D) – Two Quantum dots			
Outco		Remembe	r, understand and analyze the basics and impedent of the second	porta		K1, K2, K3, K4, K6			
			Unit - III						
evapor Magne	Film de ration, etron sp iques –	eposition T Electron be outtering, R APCVD, N Remembe	he importance and methodology of thin film deposition echniques: Physical Vapor Deposition (PVD) Techn am evaporation, Laser ablation, and Cathode arc do eactive Sputtering and Ion beam sputtering - Chemi IOCVD, Spin coating and Spray Pyrolysis.	ique eposi cal V	s - Evapora ition. Sputt Vapor Depo	ering: DC/RF			
		deposition	techniques.			K4, K6			
			Unit IV						
Objec	ctive 4	To study t	he basic principles, methods and applications of solid s	state	ionics				
- Supe conductor	erionic f ctors, s cting p neric ele	materials cl tructural fa olymer nai	ries and models of ionic conduction - phenomenologic assification-Crystalline anionic and cationic conducto ctors responsible for high ionic conductivity - Con nocomposites and nanocrystalline ceramics - Elect nolten salt –Lithium transport in lithium batteries-Po	rs m ncep rolyt	ixed ionic a ts and feas tes: Liquid	and electronic ibility of ion Electrolytes-			
Outco	ome 4	Remembe ionics.	r, understand and analyze the basics and importance of	Soli		K1, K2, K3, K4, K6			

	Unit V									
Objective 5	Dbjective 5 To provide a basic understanding with case studies on different surface non-destructive techniques and apply them for inspecting materials in accordance with industry specifications and standards									
methods - Th methods,- inf Testing (UT)	ive Testing: Methods: Liquid Penetrant Testing – Principles, types, advantages and limita ermography Testing Methods: Thermography- Principles, Contact and non co rared radiation and infrared detectors, Instrumentations and methods, Applicati and Acoustic Emission (AE): Ultrasonic Testing-Principle, pulse-echo method Acoustic Emission Technique – Principle, AE parameters, Applications.	ntact inspection ons - Ultrasonic								
Outcome 5	K1, K2, K4, K5									
Suggested Re J.C. Brice (19	eadings: 86), Crystal Growth Processes, John Wiley and Sons, New York.									
	nian Duncan Sutherland (2013), Nanotechnologies: <i>Principles, Applications, I ivities (ISBN 978 -92 -79 -21437 -0)</i> European Commission, B-1049 Brussels.	mplications and								
	(1955), "Thin Film Physics", Butter worths scientific publications.									
Minami, T., T for Batteries.	Catsumisago, M., Wakihara, M., Iwakura, C., Kohjiya, S & Tanaka, I. (2005), S Springer.	olid State Ionics								
Charles, J. He	llier (2001), Handbook of Nondestructive evaluation, McGraw Hill, New York.									
Online Resou	irces									
https://archiv	<u>/e.nptel.ac.in/courses/113/106/113106034/</u>									
https://online	courses.nptel.ac.in/noc22_mm14/preview									
K1-Remember	K2-Understand K3-Apply K4-Analyze K5-Evaluate	K6-Create								
	Course designed by	Dr.S.Sudhahar								

Sto excellent

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	L(1)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	S(3)
CO2	S(3)	M(2)	L(1)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)
CO3	S(3)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	L(1)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)	M(2)	L(1)	S(3)
CO5	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)	M(2)	L(1)	S(3)
W.Av	3	2.2	1.8	2.6	2	2.4	2.6	2	1.4	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	L(1)	M(2)	S(3)
CO2	S(3)	S(3)	L(1)	M(2)	S(3)
CO3	S(3)	S(3)	L(1)	S(3)	S(3)
CO4	S(3)	S(3)	L(1)	S(3)	S(3)
CO5	S(3)	S(3)	M(2)	S(3)	S(3)
W.Av	3	2.8	1.2	2.6	3

Course Outcome Vs Program Specific Outcomes

S-Strong (3), M-Medium (2), L-Low (1)	S-Strong	(3), M	-Medium	(2),	L-Low	(1)
---------------------------------------	----------	--------	---------	------	-------	-----

DSE	Course cod 521506	e:	QUANTUM CHEMISTRY	T	Credits: 4	Hou 4		
			Unit I					
Objectiv	ve 1 T	'o imp	art basic knowledge about quantum chemistry to the stude	nts				
			cy and scaling- Classes of methods – Hartree-Fock (HF) at field (MCSCF) - Density functional theory - Variational			- Mu	ılti-	
Outcom			be the fundamentals of Ab-initio methods like multi-co ent field, Hartee- Fock etc.	nfigura	tional self-	K1		
	·		Unit II					
Objectiv			ly the basic data recognizing and accounting for uncertaint					
-	-	-	ors-second, third, fourth postulates of QM, derivative of	-		-		
time - Ei matrix.	gen functions a	and po	osition operator-Dirac Delta function- projection operator-	density	operator and	d den	sity	
Outcome 2 Clarify the relations using Operators and second, third, fourth postulates of QM.								
			Unit III					
Objectiv	и е 3 Т	'o und	erstand the basic knowledge on simple spectroscopic appli	cations				
			ications: Quantum mechanical picture of chemical bond bond – M-O bond theories – Comparison – Heitler – Londo					
Outcom			te the molecular orbital, valence bond, and M-O bond theo		-	K6		
	·		Unit V			•		
Objectiv	ve 4 T	o stud	ly the molecular orbital theory					
principle		•	: LCAO approximation- The Huckle approximation – H of Orbitals- Hybridization – Molecular orbital of CH ₄ , C ₂					
Outcom	e 4 D	educe	e the Huckle approximation, Hund's rule and exclusion pri	nciple.		K4		
	1		Unit V					
Objectiv			art basic knowledge on symmetry, point groups and their p					
•	• • •	•	etry operations, point groups-Properties-Determination and quantum mechanics.	nd rep	resentation-C	Charao	cter	
Outcom	e 5 A	pply enzen	the approximation concepts for molecular orbital of (ne, and water-hydrogen bonding. Explain the types of sy int groups with symmetry properties.			K3 K5	&	

Albert Cotton, F. (2009). *Chemical applications of Group Theory* (3rd Edition). Wiley India (P.) Ltd. 3rd Edn. Reprint.

Chandra, A. K. (2012). Introductory Quantum Chemistry (4th Edn). Tata McGraw Hill, 9th reprint.

Donald A Mc Quarrie, (2016). Quantum Chemistry. Viva student edition.

Ira N. Levine. (2014). Quantum Chemistry. Pearson.

Prasad, R. K. (2007). *Quantum Chemistry* (3rd Edn). New Delhi: New Age International Publishers. **Online Resources**

https://chem.libretexts.org/Workbench/Username%3A_marzluff@grinnell.edu/Unit_1%3A_Quantum_Chemistry% 2C_Spectroscopy_and_Bonding/1%3A_Quantum_Mechanics_and_Spectroscopy https://pressbooks.online.ucf.edu/chemistryfundamentals/chapter/molecular-orbital-theory/

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Course	e designed by E	Dr.R.Suba Devi

Course Outcome Vs Program Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	M(2)	M(2)	L(1)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)
CO3	S(3)	M(2)	S(3)	S (3)	S(3)	L(1)	S(3)	L(1)	S(3)	M(2)
CO4	S(3)	L(1)	S(3)	M(2)	M(2)	S(3)	M(2)	L(1)	S(3)	S(3)
CO5	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	M(2)	L(1)
W.Av.	3	2	2.6	2.4	2.2	2.2	2.6	1.6	2.6	2.2

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	S(3)	S(3)	L(1)
CO2	M(2)	S(3)	L(1)	M(2)	M(2)
CO3	S(3)	L(1)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	M(2)	M(2)	M(2)
CO5	M(2)	S(3)	S(3)	S(3)	S(3)
W.Av	2.6	2.4	2.4	2.6	2.2

SEMESTER – III

Core		e code: 301		NCED MOLECUI PECTROSCOPY	LAR ,	Т	Credits: 4	Hours: 4
	I			UNIT	I	1		
Objec	tive 1		0	is course is to show ely explain atomic an			cepts of quantum mec ectra.	hanics can be
rotator Rotatio – poly	kimation rs – isot on Spec yatomic	. Rotatic opic subs tra -Stark molecule	n of Molecul titution – Mo effect – its in	es -Rotational energe ecular Parameters (aportance in microw	gy of a diato Bond Length vave spectros	omi 1, E cop	idea's only) Born- c molecule – Rigid Bond Angle, Dipole M by – Rotational spectr p molecules- Molecul	and non-rigid foment) from ra of diatomic
Outco	Outcome 1 Understanding the rotational spectra of molecules with examples of different K2							
				UNIT I	II			
Objec	tive 2	To com	prehend the ro	tational spectroscop	y.			
spectra disasso Interpr handli	a of pol ociation retation ng tech	yatomic - predis of vibra niques-Fo pt of mul	molecules-Fra association – ational spectra ourier Transfo iple potential	nck-Condon princip mutual exclusion p a-Group frequencie orm Infrared spectr minima and inversion	ple – intensit principle. No es. IR spectr oscopy-Appl on of NH ₃ .	ty orm rop ica	Fermi resonance-Rota distribution – portrai al modes of vibratio hotometer-Instrument tions. Overtone and mic and polyatomic	t parabolae – on in crystal- tation-Sample
Outco	ome 2		es and learr		equency assi	gn	ments with proper	K5,K6
				UNIT I	ILEN	_		
Objec	tive 3	To learn	about the vib	rational spectroscop	y and SERS.			
Ramar Structu Reson Ramar	n spectra ure dete ance Ra n scatter	a. Raman erminatio uman sca ring-Inve	n spectrometer n using IR a tering-Nonlin rse Raman ef	-Sample handling nd Raman spectro ear Raman phenom	techniques-Po scopy-Ramar ena-Prelimin -Stokes Rama	ola: n i: aric an	ntional Raman spect rization of Raman so nvestigation of phas es-Hyper Raman effe scattering. Photo acc on absorption.	cattered light- e transitions- ect-Stimulated
Outco	ome 3			nan and SERS tech or Photon absorptio		ole	ecules. Applying the	К3

	UNIT IV							
Objective 4	To understand the electronic spectroscopy and NMR.							
processes- Bloc spin coupling - Basic principle	ectroscopy: Basic principles – Quantum theory of NMR - magnetic resonance ch equations – chemical shifts. Dipole –Dipole interaction and spin lattice inter - Spectra and molecular structure – Fourier Transform NMR –Instrumentation – es – Quantum theory - g-factor – Nuclear Interaction and Hyperfine structure rfine interaction – line widths-ESR -NQR (principle only) spectrometer – Instr	raction- spin- Applications. - Relaxation						
Outcome 4	tcome 4Describing the theory of resonance spectrometry with basic concepts, working of instrument and applications of resonance spectrometry.K1,K4							
	UNIT V							
Objective 5	To give advanced knowledge about the interactions of EM radiation with ma applications in spectroscopy like IR, RAMAN, NMR, ESR, NQR and Mossbau							
Transition frequ Mossbauer effe	pectroscopy: Basic theory - Nuclear Electric quadrupole interaction – Energy – Excitation and Detection – Effect of magnetic field – Instrumentation – ect - recoilless emission and absorption - hyperfine interaction - chemical is	applications. somer shift -						
	erfine and electric quadruple interactions – `Instrumentation – applications lecular structure – crystal symmetry and molecular structures.	– Electronic						
		- Electronic						
structure – mole Outcome 5 Suggested Rea Chaudhuri. M <i>(Theoretical, J</i> Gunter Gaugl	Decular structure – crystal symmetry and molecular structures.Deliberating influence of magnetic field on nuclear interactions and electronic spin resonance in Mossbauer spectrometry. Study the instrumentation of Mossbauer Spectroscopy and it's application in –	K2,K3 ctroscopy						
structure – mole Outcome 5 Suggested Rea Chaudhuri. M <i>(Theoretical, J</i> Gunter Gaugh Sons, Inc.	 Deliberating influence of magnetic field on nuclear interactions and electronic spin resonance in Mossbauer spectrometry. Study the instrumentation of Mossbauer Spectroscopy and it's application in – Adings: Mekkaden, R.K, Raveendran, M.V, Narayan, A.V. (2010) <i>Recent Advances in Spect Astrophysical and Experimental Perspectives</i>), (Eds.), Springer-Verlag, Berlin. Itz, David, S. (2014). <i>Handbook of Spectroscopy</i> 1-4 Volume, 2nd Edition, John (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy</i>, 1-4 (2015). <i>Atomic and Molecular Spectroscopy</i>, 1-4 (2015). 	K2,K3 ctroscopy Wiley &						
structure – mole Outcome 5 Suggested Rea Chaudhuri. M <i>(Theoretical, J.)</i> Gunter Gaugl Sons, Inc. Rita Kakkar, (University Press	 Deliberating influence of magnetic field on nuclear interactions and electronic spin resonance in Mossbauer spectrometry. Study the instrumentation of Mossbauer Spectroscopy and it's application in – Adings: Mekkaden, R.K, Raveendran, M.V, Narayan, A.V. (2010) <i>Recent Advances in Spect Astrophysical and Experimental Perspectives</i>), (Eds.), Springer-Verlag, Berlin. Itz, David, S. (2014). <i>Handbook of Spectroscopy</i>, 1-4 Volume, 2nd Edition, John (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, Caress. 	K2,K3 ctroscopy Wiley & ambridge						
structure – mole Outcome 5 Suggested Rea Chaudhuri. M <i>(Theoretical, J.)</i> Gunter Gaugl Sons, Inc. Rita Kakkar, (University Pro Roderick Was Shu-Lin Zhan	 Deliberating influence of magnetic field on nuclear interactions and electronic spin resonance in Mossbauer spectrometry. Study the instrumentation of Mossbauer Spectroscopy and it's application in – Adings: Mekkaden, R.K, Raveendran, M.V, Narayan, A.V. (2010) <i>Recent Advances in Spect Astrophysical and Experimental Perspectives</i>), (Eds.), Springer-Verlag, Berlin. Itz, David, S. (2014). <i>Handbook of Spectroscopy</i> 1-4 Volume, 2nd Edition, John (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, California (2015). <i>Atomic and Molecular Spectroscopy</i>, 1-4 (2015). <i>Atomic and Molecular Spectroscopy</i>, 1-4 (2015). 	K2,K3 ctroscopy Wiley & ambridge /iley.						
structure – mole Outcome 5 Suggested Rea Chaudhuri. M <i>(Theoretical, J</i> Gunter Gaugl Sons, Inc. Rita Kakkar, (University Pro Roderick Was Shu-Lin Zhan Inc.	 Lecular structure – crystal symmetry and molecular structures. Deliberating influence of magnetic field on nuclear interactions and electronic spin resonance in Mossbauer spectrometry. Study the instrumentation of Mossbauer Spectroscopy and it's application in – Adings: Mekkaden, R.K, Raveendran, M.V, Narayan, A.V. (2010) <i>Recent Advances in Spect Astrophysical and Experimental Perspectives</i>), (Eds.), Springer-Verlag, Berlin. Litz, David, S. (2014). <i>Handbook of Spectroscopy</i>, 1-4 Volume, 2nd Edition, John (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, Caress. Litzy Structure and Molecular Spectroscopy Basic Concepts and Applications, Caress. Lity Structure and Spectroscopy and its Application in Nanostructures, John Wiley. 	K2,K3 ctroscopy Wiley & ambridge /iley.						
structure – mole Outcome 5 Suggested Rea Chaudhuri. M (<i>Theoretical</i> , A Gunter Gaugl Sons, Inc. Rita Kakkar, (University Pro Roderick Was Shu-Lin Zhan Inc. Online Resour https://physid	 Deliberating influence of magnetic field on nuclear interactions and electronic spin resonance in Mossbauer spectrometry. Study the instrumentation of Mossbauer Spectroscopy and it's application in – Adings: Mekkaden, R.K, Raveendran, M.V, Narayan, A.V. (2010) <i>Recent Advances in Spect Astrophysical and Experimental Perspectives</i>), (Eds.), Springer-Verlag, Berlin. Ilitz, David, S. (2014). <i>Handbook of Spectroscopy Basic Concepts and Applications</i>, Caress. asylishen, E. (2012) <i>NMR of Quadrupolar Nuclei in Solid Materials</i>, Ist Edition, Wong, (2012) <i>Raman Spectroscopy and its Application in Nanostructures</i>, John Wilestrees 	K2,K3 ctroscopy Wiley & ambridge /iley.						
structure – mole Outcome 5 Suggested Rea Chaudhuri. M (<i>Theoretical</i> , . Gunter Gaugl Sons, Inc. Rita Kakkar, (University Pro Roderick Was Shu-Lin Zhan Inc. Online Resour <u>https://physic</u> introduction	 Deliberating influence of magnetic field on nuclear interactions and electronic spin resonance in Mossbauer spectrometry. Study the instrumentation of Mossbauer Spectroscopy and it's application in – Adings: Mekkaden, R.K, Raveendran, M.V, Narayan, A.V. (2010) <i>Recent Advances in Spect Astrophysical and Experimental Perspectives</i>), (Eds.), Springer-Verlag, Berlin. Ilitz, David, S. (2014). <i>Handbook of Spectroscopy</i>, 1-4 Volume, 2nd Edition, John (2015). <i>Atomic and Molecular Spectroscopy Basic Concepts and Applications</i>, Caress. Isylishen, E. (2012) <i>NMR of Quadrupolar Nuclei in Solid Materials</i>, Ist Edition, Wing, (2012) <i>Raman Spectroscopy and its Application in Nanostructures</i>, John Wilegrees 	K2,K3 ctroscopy Wiley & ambridge /iley.						
structure – mole Outcome 5 Suggested Rea Chaudhuri. M <i>(Theoretical, J</i> Gunter Gaugl Sons, Inc. Rita Kakkar, (University Pro Roderick Was Shu-Lin Zhan Inc. Online Resour <u>https://physic</u> introduction	 Deliberating influence of magnetic field on nuclear interactions and electronic spin resonance in Mossbauer spectrometry. Study the instrumentation of Mossbauer Spectroscopy and it's application in – Adings: Mekkaden, R.K, Raveendran, M.V, Narayan, A.V. (2010) <i>Recent Advances in Spect Astrophysical and Experimental Perspectives</i>), (Eds.), Springer-Verlag, Berlin. Ilitz, David, S. (2014). <i>Handbook of Spectroscopy Basic Concepts and Applications</i>, Caress. asylishen, E. (2012) <i>NMR of Quadrupolar Nuclei in Solid Materials</i>, Ist Edition, Wong, (2012) <i>Raman Spectroscopy and its Application in Nanostructures</i>, John Wilestrees 	K2,K3 ctroscopy Wiley & ambridge /iley.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	S(3)	M(2)	M(2)	M(2)
CO3	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)	M(2)	M(2)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)	L(1)	M(2)	S(3)	S(3)	M(2)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)
W.Av	3	2.4	2.6	1.8	2	1.4	2.2	2.4	2.4	2.4

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO/PSO			90		
CO1	S(3)	S(3)	L(1)	M(2)	S(3)
CO2	S(3)	S(3)	L(1)	M(2)	S(3)
CO3	S(3)	S(3)	L(1)	S(3)	S(3)
CO4	S(3)	S (3)	L(1)	S(3)	S(3)
CO5	S(3)	S(3)	L(1)	S(3)	S(3)
W.Av	3	3	1	2.6	3

		rse code: 21302		QUANT	FUM MF	CHANIC	CS – II	Т	Credits: 4	Hours
		21002			U	NIT I				
Objec	tive 1	The main theories of	•			-	-	oth knov	vledge on th	e advano
operat values spin 1	ors– Co of J ² a -Pauli	ommutation nd J _z –Matr	n relati rix repi ices an	ons –eige resentatio d its prop	en value s n of angu	pectrum- ılar mome	Commuta ntum –Spi	tion rela n Angul	es –Angular tions of J _z , J ar momentur tenta – Cleb	., J. – Eig n – Spin
Outcome 1 Remember the concept and importance of angular momentum and represent it in operator form. K								it K1		
					U	NIT II				·
Objec	tive 2	This pape certain mi						r mome	ntum, althou	gh there
				-			U .	1	– Symmetri	
conneo Hartre	ction- (e-Fock	Central field Equation – eparation.	ld appr –Classi	roximation ification c	n –Thom of elemen	ts in Perio	Model of Modic Table	f the At - Alkali	om –Hartree atoms Doub	equation
conneo Hartre	ction- (e-Fock oublet s	Central field Equation – eparation.	ld appr -Class er the n	roximation ification contact of interview of interview of the second sec	n –Thom of elemen dentical p	son-Ferm its in Perio	Model of Modic Table	f the At - Alkali	om –Hartree	equation
connee Hartre and do	ction- (e-Fock oublet s	Central field Equation – eparation. Remember	ld appr -Class er the n	roximation ification contact of interview of interview of the second sec	n –Thom of elemen dentical p pproxima	son-Ferm its in Perio	Model of Modic Table	f the At - Alkali	om –Hartree atoms Doub	equation let intens
connee Hartre and do	ction- (ee-Fock oublet s ome 2	Central field Equation – eparation. Remember methods in	ld appr -Classi er the n in centr ose of	roximation ification of nature of ion ral field ap	n –Thom of elemen dentical p pproxima UN er is to o	son-Ferm its in Perio particles an ition NIT III lemonstra	Model of odic Table nd to apply	f the Ate	om –Hartree atoms Doub	equation let intens K1 & K
Connec Hartre and do Outco Objec Relati and cu Dirac' form o	etion- (be-Fock oublet s ome 2 etive 3 evistic (urrent d s Relat of Dirac	Central field Equation – eparation. Remember methods in The purpor mechanics Quantum M ensities – Ir ivistic Ham	Id appi –Classi er the n in centri ose of s and i Mecha interact niltonia – Nega	this pape ts relativis nics: Schein tion with e an – Plane	n –Thom of elemen dentical p pproxima UN er is to o stic partic rodinger electroma e wave so gy states	son-Ferm its in Period particles and ition NIT III lemonstraticles are. relativistic ingnetic fie lution–Di -predictio	i Model or odic Table nd to apply te how sir c equation- ld-Applica rac matrice	f the Ata - Alkali the app nilar cer -Klein-Co ttion to H es and pr	om –Hartree atoms Doub roximation	equation let intens K1 & K in quant on- char m – /ariant

	UNIT IV
Objective 4	It describes the principles of scattering theory.

Elements of Field Quantization: Relativity and notations- Infinitesimal transformation – Natural units -Quantization of wave fields – Classical approach - Lagrangian and Hamiltonian equation – Elements of field quantization – Quantization of non-relativistic field –Creation, destruction and Number Operators – Anticommutation relations – Quantization of relativistic field- Klein Gordon field- Dirac Field – Quantization of Electromagnetic field.

Outcome 4	Understand the elements required for field quantisation and to apply it to quantize relativistic fields	K2 & K3					
	UNIT V						
Objective 5	It provides information about relativistic equation which accounts for elected electron magnetic moment and the concept of hole.	tron spin,					

Scattering Theory: Scattering cross section – Scattering amplitude –Kinematics of scattering process - Laboratory and center of mass reference systems – Green's function – Born approximation and its validity – Scattering by screened Coulomb potential. Partial wave analysis: Asymptotic behaviour – Scattering amplitude in terms of phase shifts - Optical theorem – Scattering length and effective range theory of low energy scattering –Resonant scattering –Ramsauer Townsend effect – Scattering by square well potential - Scattering of identical particles

Outcome 5	Understand the particles in atomic level during scattering and applying	K2,K3
Outcome 5	the theory to analyse the nature of phase shift	&K4

Suggested Readings:

S. Rajasekar, R. Velusamy (2015), Quantum Mechanics I: The Fundamentals, CRC Press.

P.M. Mathews and K.Venkatesan (2010), A text book of Quantum Mechanics, McGraw Hill, New Delhi.

G. Aruldhas (2008), Quantum Mechanics — PHI Learning Private Limited, New Delhi.

David J. Griffiths (2015) Introduction to Quantum Mechanics, Pearson Education Ltd., Second Edition.

V. Devanathan (2011), Quantum Mechanics, Alpha Science International Ltd, United Kingdom

V.K.Thankappan (2018) *Quantum Mechanics* — NewAge International Publishers - 4th Edition, New Delhi.

VA Fock (2018) Fundamentals of Quantum Mechanics-, 2nd Ed.,

AjoyGhatak and S. Lokanathan (2012) Quantum Mechanics Theory and Applications, McMillan, Fifth Edition.

L. Schiff (1968) Quantum Mechanics, McGraw Hill.

SatyaPrakash and Swati Saliya, KedarNath Ram (2010) Quantum Mechanics , Nath& Co., New Delhi.

Online Resources	Online Resources									
https://www.lancaster.ac.uk/staff/schomeru/lecturenotes/Quantum%20Mechanics/index.html										
https://quantumme	echanics.ucsd.edu/pl	h130a/130 nc	otes/node1.html							
K1-Remember	K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create									
	Course designed by Dr.R.Suba Devi									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	L(1)	M(2)	S(3)	L(1)	L(1)	M(2)	L(1)	M(2)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	S(3)	L(1)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)	M(2)	L(1)	M(2)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	L(1)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	L(1)	M(2)
W.Av	3	2.6	2.6	2.6	2.2	1	1.8	2.6	1	2

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	L(1)	L(1)	L(1)	M(2)
CO2	S(3)	S(3)	M(2)	L(1)	M(2)
CO3	S(3)	M(2)	S(3)	L(1)	M(2)
CO4	S(3)	S(3)	S(3)	L(1)	M(2)
CO5	S(3)	S(3)	S(3)	L(1)	M(2)
W.Av	3	2.4	2.4	1	2

Core	ore Course code: CONDENSED MATTER PHYSIC 521303				ICS - I	Τ	(Credits: 4	ł	Hours: 4				
		21303				U	NIT I					Ŧ		
Object	ive 1	To give str	rong fou	undation	in cr	ystal p	physic	5.						
Crystal lattices, lattices	Crystal Physics: Crystal Structure - Symmetry and Physical Properties of Crystals – Point groups, Bravais lattices, Space groups, Crystal lattice and Crystal structure, Symmetry elements, Crystal systems – Type of lattices –Lattice representation - Simple symmetry operations - Characteristics of cubic cells - Structural features of NaCl, CsCl, Diamond, ZnS – Close packing.													
Outcon	Outcome 1Understand basic crystal physics and material structural properties.K1, K2									K1, K2				
							NIT II						I	
Object	ive 2	The conce theoretical	-		anding	g of	solid	state	physics	devel	opn	nent with	aj	ppropriate
Crystal Diffraction: X-rays and their generation - Moseley's law – Absorption of X-rays –X-ray diffraction – Reciprocal lattice – Reciprocal lattice to SC, BCC and FCC crystals- Important properties of the Reciprocal lattice – Diffraction Intensity - The Powder method – Powder Diffractometry - The Laue method -The Rotating Crystal method - Neutron Diffraction - Electron diffraction Applications.														
Outcon	ne 2	Remember	er crystal	l diffract	ion m	nethod	ds and	mecha	nism in c	letail.				K2
					46		IIT III							
Object		Understand	_			-				_				. 1
Classifi imperfe dislocat Grain b	cation ections tion (B ounda	erfections of Defects – Interstitia Burgers Vect ry, twin bou of liquid cry	ts - Poi al atom tor) – <mark>P</mark> undary a	nt impe – Substi resence and stack	rfecti itution of dis cing f	i <mark>ons</mark> – nal de slocat f <mark>aul</mark> t. (- Con efects - ion - I Ordere	centrat Line Plane d d phas	ions of imperfecter lefects (S es of ma	Vacanc tions – Surface/	cy, Edg bou	Frenkel a ge disloca indary imj	ind tior	Schottky n - Screw fections) -
Outcon	ne 3	Conceptual	al under	standing	of cr	ystal	defects	s with a	appropria	ate theo	ry.			K1, K2
						UN	NIT IV							
Object	ive 4	To impart l	knowle	dge abou	ut cry	rstallir	ne stru	ctures,	lattice vi	ibration	ıs, to	o the stude	ents	5.
relation	is - Ph onal m	mics: Theo onon momen odes - Eins	entum. I	Heat Cap	oacity	: Spe	cific h	eat cap	acity of	solids -	- D	ulong and	Pe	tit's law -
Outcon	ne 4	Analyze ar capacity.	and desc	ribe the	theor	retica	l back	ground	of lattic	e dyna	mic	es and hea	ıt	K4, K5

	UNIT V							
Objective 5 To understand theory and to do experimental work.								
– Density of	ectrons: Free electron theory, Band structure of solids, metals, insulators and semiconductors States - Hall effect and magneto resistance – Wiedemann – Franz law - Bloch functions - n - Kronig – Penney model - Limitations of K-P model.							
Outcome 5Distinguish conductors and semiconductors on basis of band theory and to estimate hall effect.K5, K6								
Suggested Re Bain, A. K	adings: L. & Chand, P. (2017). <i>Ferroelectrics</i> . Wiley.							
Charles K India Pvt.	ittel. (2012). Introduction to Solid State Physics (8 th ed). New Delhi: John Wiley & Sons. Ltd.							
Patterson,	J. D. Bailey B.C. (2012). Solid-State Physics: Introduction to the Theory, Springer							
Publication	ns.							
Pillai, S.O	. (2006). Solid State Physics, New Age International.							
Wahab, M publishers								
Online Resou	irces							
https://arcl	hive.nptel.ac.in/courses/115/106/115106061/							
https://onl	https://onlinecourses.nptel.ac.in/noc22_ph09/preview							
K1-Rememb	er K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create							
	Course Designed by Dr. R. Yuvakkumar							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO4	S(3)	M(2)	L(1)	M(2)	M(2)	L(1)	M(2)	M(2)	M(2)	L(1)
CO5	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)
W.Av	3	2	2.6	2.6	2.8	1.8	2.8	2	2.6	2.2

S-Strong	(3),	M-Medium	(2),	L-Low	(1)
-----------------	------	-----------------	------	-------	-----

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	M(2)	M(2)
W.Av	3	2.8	2.8	2.6	2.6

S-Strong	(3),	M-Medium	(2),	L-Low	(1)
----------	------	-----------------	------	-------	-----

		LABORATORY	P	Credits: 5	Hours: 10				
	521304	 To understand the basic operations of electron 		 rowits and the					
		ICs manufacturing.		icuits and the	concept of				
		To exercise the practice in various advance	ed d	igital electror	nics to the				
		students.	cu u	igital cicculoi	nes to the				
Ohiaa	4	To acquire the knowledge of operational ampli	fier a	nd its applicat	ions				
Objec	cuves	 To understand code conversion and different kinds of modulation techniques 							
		-							
		used in communication process.		1 .	4 11				
		> To learn about the differences between micro	proce	essor and mici	rocontroller				
		and their programming.	•	、 、					
		(Any Fifteen of the follo	owing)					
		1. Half adders and Full adders.	107	4.1					
		2. Integrator and Differentiator circuits using	g IC /	41.					
		3. Active filters using IC 741.							
		4. A/D converter.							
		 5. Encoder - Decoder circuits. 6. Square wave, Sine wave and Triangular wave generators using IC. 							
		7. Multiplexer circuits.	ave g	ellerators usin	ig iC.				
		 8. Flip – Flop circuits using IC. 							
		 9. Construction of Counters using discrete construction 	omnoi	nonte					
		10. Monostable multivibrator using op-amp.	Jinpoi	liciits.					
		11. Astable multivibrator using op-amp and using IC 555.							
		12. Schmitt trigger using op-amp.							
		13. Demultiplexer circuits.							
		14. Logic gates using IC's.							
		15. BCD to 7 segment display and BCD deco	der						
		16. Shift register and ring counter.	aer.						
		17. Operation of 7489 RAMS.							
		18. Arithmetic operations – Microprocessor 8	085.						
		19. Logical operations - Microprocessor 8085							
		20. Code conversion - Microprocessor 8085.							
		21. Any of the experiments of equal standard.							
		On successful completion of the course, a student		be able to					
		 Develop the programming skills of Microprocessor. 							
Outco	111 0.5	 Exercise the applications of electronic circuits. 							
Outco	omes	 Design circuits like encoder/decoder and multiplexer/demultiplexer 							
		 Exercise the BCD seven segment display and 	1 BCE) decoder.					
		 Develop flip-flop circuits. 							
K1-Re		Understand K3-Apply K4-Analyze K e designed by Dr.R.Suba Devi, Dr. M. Ramesh	5-Eval		Create				

SEMESTER – III

DSE	Course Code: 521507	COMMUNICATION ELECTRONICS	Т	Credit:4	Hours:4				
		Unit I		1					
Objective	To understand systems	I the basic concepts of communication and	optica	al communica	ation				
Antennas &	& wave propagati	on: - Terms and Definition - Effect of Groun	nd on	Antennas-G	rounded $\lambda/4$ -				
Ungrounde	d Antenna λ Ant	enna- Antenna Arrays-Broadside and End	l Sid	e Arrays-An	tenna Gain-				
Directional	High Frequency A	Antennas- Sky Wave Propagation- Ionosphe	ere- E	Eccles & Ları	nor Theory-				
Magneto Ic	nic Theory-Groun	d Wave Propagation. Basic Antenna param	neter,	Antenna Me	asurements-				
Radiation p	attern, Gain Imped	ance.							
Outcome 1	Describe the	elements of Radar and television systems.			K1, K2				
Unit II									
Objective 2	Objective 2 To identify different types of modulation and multiplexing formats and to compute a simple optical power budget								
Microwave	es: - Microwave C	Generation-Multicavity Klystron-Reflex Kl	ystro	n-Magnetron	- Travelling				
		r Microwave Tubes-MASER-Gunn Diode,	-	-	-				
	· /	tion of Microwaves by Atmospheric gases		1 1	•				
		um) Theory, Microwave cavities, Microwav							
Outcome 2		e salient features of microwave generation			K2				
		Unit III							
Objective 3	3 To provide the	basic knowledge about the Radar and televi	sion						
Radar and	television: - Elem	ents of a Radar System-Radar Equation-Rad	lar Pe	erformance Fa	actors-Radar				
Transmitting	g Systems- Radar	Antennas-Duplexers-Radar Receivers and	Indi	icators- Pulse	ed Systems-				
		TV Transmission and Reception, Applic							
	forms, Radar block								
Outcome 3	Elucidate the c	oncepts of communication electronics.			K2, K3				
		Unit IV							
Objective 4		sics on communication methods in electronics							
		: - Analog and Digital Signals - Modula							
-	-	- Frequency spectrum of the FM wave							
-		x, AM-receivers & FM Transmitters, FM-							
		eneration-Third Generation-Fourth generati	on-La	atest Generat					
Outcome 4	Understand the	functions of Antenna and wave			K2, K3, K4				
Objective 5	A aquina tha 1	Unit V							
U	1	nowledge about optical fibers		Jumorical Ar	artura Star				
		of Light in an Optical Fiber-Acceptance An							
	1	tical Fiber as a Cylindrical Wave Guide-			-				
	-	nd Multimode Fibers, photonic crystal fiber		-	pucai liber-				
Optical fibe		n-Laser based underwater communication s	ysten	15.	K2, K3				
Outcome 5	Explore the ap	plications of optical fibers.			112, 110				

Stewart D. Personick. (2013). Fiber Optics technology & Applications. Delhi: Khanna Publishers.Khare

A, Tiwari, U.S. Sethi, I. Singh, N. (2019). *Recent Trends in communication*, computing, and Electronics. Springer Publication.

Kennedy, G. Prasanna, SRM. Davis, B. (2017). *Kennedy's Electronic Communication System*. Tata McGraw Hill.

Simon Haykin-John. (2018). Communication Systems. Wiley & Sons.

Taub, H. Donald L. Schilling. Saha, G. (2017). *Principles of Communication Systems*. McGraw Hill Education.

Online Resources

https://training.weather.gov/nwstc/NEXRAD/RADAR/Section1-2.html

https://www.elprocus.com/microwaves-basics-applications-effects/

https://www.javatpoint.com/antennas-and-wave-propagation

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
Course designed by Dr. M. Ramesh Prabhu									
	601	-	100 C						

Course Outcome Vs Program Outcomes

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	S (3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO4	S(3)	M(2)	M(2)	S (3)	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)
CO5	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)
W.Av	3	2	2.8	2.8	3	2	3	2.2	2.8	2.6

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	M(2)	M(2)
W.Av	3	2.8	2.8	2.6	2.6

DSE		rse code: 21508	PHYSICS OF NANOMATERIALS	T	Credits: 4	Hours: 4
			Unit 1	1		_
Objec	tive 1	To impart nanoscale	the basic knowledge on the exotic properties of nanostruc lengths.	cture	ed material	s at their
Introd	luction		ion – Nanoscience and Nanotechnology - Classificat	tion	of nanor	naterials:
			and two dimension nano structures - Examples - Clas			
			gy – Chemical potential as a function of surface cu			
			lization – DLVO theory.			
Outco	me 1		d the basic knowledge on the exotic properties of nanostru tt their nanoscale lengths.	ctur	ed K1,	K2, K3
			Unit II			
Objec	tive 2	To acquire	the knowledge on various functional nanomaterials			
crystal mesop Metal-	ls, Carb orous s polyme	on nanotub tructures, c	als: Carbon Fullerenes and Nanotubes: Carbon fullere es - Micro and Mesoporous Materials: Ordered mesoporory rystalline microporous materials - Core-shell structures: s, Oxide-polymer structures - Organic- Inorganic H osites.	ous Met	structures, al-oxide st	Random ructures,
Outco		1	and gain knowledge in synthesis of nanomaterials.		K1	K2, K3
			Unit III			112,113
Objec	tive 3	To underst gel, etc	tand the basic knowledge about synthesis techniques such	as p	olasma arcł	ning, sol-
consta effects micros	nts – N s – Elec structure d magn	Aechanical trical proper e - Ferroele etic semi co	operties of nanomaterials: Melting points, Specific heaproperties – Optical properties - Surface Plasmon Resorty: Surface scattering, charge of electronic structure, Quar ctrics and dielectrics – Variation of magnetism with size inductor.	nan ntum	ce – Quan 1 transport, per parama	tum size effect of
		1			K5	, ,
			Unit IV		ľ	
Objec	tive 4	To exercis	e the students about the characterization techniques			
Synth archin Semic	esis: Sy g - Sol	nthesis of 1 gel - Ball n ors: Nanos	nano materials: Physical vapour deposition - Chemical va nilling technique - Reverse miceller technique – Electrode structures fabrication by physical techniques –	epos	ition - Syn	thesis of
Outco	me 4		tand the basic knowledge about synthesis techniques and chniques available for the processing of nanostructured ma		K 4	K5, K6

		Unit	t V					
Objective 5	To provide the basic	knowledge on the	e applications of r	anomaterials.				
	ion and Applications Transmission Electro							
Optical Propert	ies.							
Applications: N	Aolecular electronics a	and Nano electror	nics, Nano electro	mechanical system	ns- Colorants and			
pigments -DNA	A chips – DNA array o	devices – Drug de	livery systems – l	Nano Energy Syste	ems.			
Outcome 5Gain noteworthy knowledge in nanoscicene and nanotechnology with microscopic technology and understand creation, manipulation and applications of materials at nanometer scale.K3, K5, K6								
	ldings: liemeyer & Chad A Viley-VCH Verlag Gn			logy: Concepts, 2	Applications and			
Charles P. Pool	e & Frank J. Owens.	(2003). Introducti	on to Nanotechno	ology. Wiley Inters	cience.			
Mark A. Ratne ed). Prentice H	r & Daniel Ratner. (2 all P7R.	002). Nanotechno	ology: A gentle in	troduction to the r	next Big Idea (1 ^s			
Pradeep, T. (20	07). The Essentials, N	ano. Tata MC Gi	aw-Hill publishin	g company limited	d			
	nnangara, K, Smilt, C Technologies. Oversea		z Raguse, B. (200	5). Nanotechnolo	gy Basic Science			
Online Resour	ces							
https://nptel.ac.in/courses/118104008 https://onlinecourses.nptel.ac.in/noc21 mm38/preview								
meps.//ommeet								

Course designed by Dr.G.Ravi, Dr.R.Yuvakkumar

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO4	S(3)	M(2)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)
CO5	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)
W.Av	3	2	2.8	2.8	3	2	3	2.2	2.8	2.6

Course Outcome Vs Program Outcomes

S-Strong	(3),	M-Medium	(2),	L-Low	(1)
-----------------	------	-----------------	------	-------	-----

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	M(2)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	M(2)	M(2)
W.Av	3	2.8	2.8	2.6	2.6

DSE	Course Code: 521509	MICROPROCESSOR AND INSTRUMENTATION	T	Credit: 4	Hours: 4				
		Unit I	II						
Objective	1 To develop an in	n-depth knowledge about the operation of micro	proce	essors					
Microproc	essor Architecture	(8085 and 8086): Introduction, Intel 8085 : A	Archi	tecture, In	struction				
Cycle, Tim	ing Diagram: Op-co	de fetch, Memory read & Memory write - Inst	truction	on Set : In	struction				
and Data	Format, Addressing	Modes, Status Flags, Instructions Set, Dat	a Tra	ansfer, Ar	ithmetic,				
Branching,	and Logical group	operations - Interrupts - Architecture of 8	086,	Pin Confi	guration,				
Register or	ganization, Minimu	m and Maximum mode operation - Addressin	ng Mo	odes – Int	errupts –				
Hardware a	and Software.								
Outcome	1 Developing the	programming skills of microprocessor.			K1, K6				
		Unit II							
Objective 2	2 To acquire prog interrupts	ramming skill using assembly language and und	lersta	nding the o	concept of				
Programm	ing of Microproce	ssor: Instructions for 8085 – Software develop	ment	tools – A	Assembly				
language pi	rograms with data tra	ansfer, arithmetic, logical, bit level instructions	and b	ranch instr	ructions -				
Interrupts a	and interrupt service	routines-Subroutine - Flow charting - Loops	– Pse	eudo instru	uctions –				
Stack Oper	ations- Programmin	g and applications: Traffic control system.							
Outcome 2	Outcome 2 Understanding the technical architecture of microprocessor and K2								
		Unit III							
Objective 3									
U		n to 8 bit micro-controller, Architecture of 805	51- H	ardware fe	atures of				
		3051-General Purpose and Special Function R							
U U	· · ·	y organization and I/O addressing by 805	0						
		nming of 8051 (Simple Arithmetic and Logical							
Outcome 3	Realizing the a	pplications of microcontroller programming.	P8	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	K3, K4				
	1000 C	Unit IV							
Objective		ith basic interfacing devices, its programming a							
		space partition - Memory & I/O Interfacing –							
-	0	nmable Peripheral Interface: 8255 – Programm		1					
	6	ontrollers:8257 - Programmable Communication		terface:82:	51 - A/D				
Sub system	<u>is- Applications – Te</u>	mperature monitoring and Stepper motor contr	ol.						
Outcome 4	Writing progra devices and for	ms based on assembly language. Interface basic mulate microprocessor or microcontroller-based Unit V	perip d app	bheral lication.	K3, K4, K5				
Objective :	5 To build up the	application of transducers and instrumentation							
		nstrumentation amplifiers, Sample and hold of	airoui	ta Compa	rators				
		converters with 8051 - Classification of trai		-					
0		transducers, thermoelectric, p-n junction, cl			1				
		entiometer, resistive strain gauges, capacitive c							
LVDT tran	sducers - Photoelec	tric transducers: photovoltaic cell, photocondu							
transducers									
Outcome 5	5 Designing and c	onstructing transducer based instrumentation.			K3,K6				

Daniel Tabak. (2012). Advanced Microprocessors. New Delhi: Tata Mc Graw Hill. Nagoor Kani, A. (2012). Microprocessors and Microcontrollers. New Delhi: Tata Mc Graw Hill. Ram, B. (2010). Fundamentals of Microprocessors and Microcomputers (8th Edition). New Delhi: Dhanpat Rai Publications (P) Ltd.

Ramesh Gaonkar. (2010). *Microprocessor Architecture, Programming and Application*. New Delhi: Pri-Penram International Publishing.

Ray, A. K. (2006). Advanced Microprocessors and Peripherals. New Delhi: Tata Mc Graw Hill.

Online Resources

https://www.tutorialspoint.com/microprocessor/microprocessor 8085 architecture.htm https://www.geeksforgeeks.org/data-transfer-instructions-8085microprocessor/?ref=lbp https://www.javatpoint.com/microcontroller https://www.eeeguide.com/interfacing-of-8257-with-8085/

K1-RememberK2-UnderstandK3-ApplyK4-AnalyzeK5-EvaluateK6-CreateCourse designed by Dr. K. Sankaranarayanan

Course Outcome Vs Program Outcomes

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	S(3)	S(3)	L(1)	S(3)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S (3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S (3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)
W.Av	3	3	2.6	2.6	2.8	2.4	3	3	2.6	3

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	M(2)	L(1)
CO2	S(3)	S(3)	M(2)	M(2)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.Av	3	2.8	2.6	2.6	2.4

S-Strong (3), M-Medium (2), L-Low (1)

			SEMESTER – IV			
Core		se code: 1401	CONDENSED MATTER PHYSICS - II	Т	Credits: 4	Hours: 4
UNIT I						
Objecti			the dielectric concepts.			
			nent - Polarization - Classification of polarization - L			
			tion field - Lorentz field - Dielectric constant - Polarizab			•
			- Ionic polarizabilities - Orientational polarizabilities -	Freq	uency and	temperature
effects	on Pola		Dielectric breakdown and dielectric loss.			
Outcon	ne 1	Understa	nd the effect of macroscopic electric field on dielectric ma	ateria	ls.	K1, K2
			UNIT II			
Objecti			stand the features of ferroelectrics and piezoelectrics.			
Ferroe	lectrics	and Pi	ezoelectrics: Ferroelectric Crystals - Classifications	of F	erroelectric	crystals -
Ferroel	ectric T	ransition-	Antiferroelectricity - Polarization catastrophe - Ferroelectroelectricity	ctric	domains - H	Ferroelectric
domain	wall n	notion - I	Dipole theory of ferroelectricity - Piezoelectricity - Phe	enom	enological	approach to
Piezoel	ectric ef	ffects - Pie	zoelectric parameters and their measurements - Piezoelec	tric n	naterials.	
Outcon			er ferroelectrics and piezoelectric mechanism in detail.			K1, K2
		1	UNIT III			
Objecti	ive 3	To learn	about the magnetism and magnetic materials.			
Magne	tic Mat		assification of magnetic materials - Langevin's theory o	f para	amagnetism	- Quantum
theory of	of paran	nagnetism	- Ferromagnetism - Curie law - Weiss molecular field th	eory	- The physic	cal origin of
			Hund's rules - Ferromagnetic domains - Domain theory -			
			nd ferrites - Spin waves - Hard and soft magnetic materia		0	
Outcon			al understanding of dia, para, ferro and antiferro magneti		detail.	K1, K2, K3
			UNIT IV			
Objecti	ive 4	To under	stand the importance of superconductivity.			
magnet Coheren	ic fields nce leng Josephs	s - Meissn gth - BCS	roduction - Occurrence of superconductivity - destruction er effect - Isotope effect - Type I and Type II supercond Theory - Cooper pair - Normal tunneling and Josephson - Macroscopic quantum interference - High temp	lucto1 effec	rs - London t - DC Josej	equations - phson effect
Outcon		Analyze	and describe the type I and type II superconducting mater	ials.		K4, K5
			UNIT V			*
Objecti	ive 5	To learn	the physics of nanosolids and quantum confinement.			
Physics	s of Na		Definition of nanoscience and nanotechnology - Pre	parati	on of nand	omaterials -
Surface	to volu	ime ratio ·	- Quantum confinement of nanostructures - Qualitative and	nd Qu	uantitative o	lescription -
Density	of stat	es of nand	ostructures - Excitons in Nano semiconductors - Carbon	in na	notechnolog	gy - Carbon
			nd - Graphene.			
Outcon			nd nanoscicene and nanotechnology with microscopic tec	hnolo	ogy.	K3, K5, K6
Sugges		0				
			(2017). Ferroelectrics. Wiley.			
		· /	troduction to Solid State Physics (8 ed.). New Delhi: John		•	
		•	B. C. (2012). Solid-State Physics: Introduction to the The	eory,	Springer Pu	blications.
Pillal, S	S.O. (20	06). Solid	State Physics, New Age International			

Wahab, M. A. (2015), *Solid State Physics-Structure and properties of Materials* (2 ed.). New Delhi: Narosa Publishers

Online Resources

https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-ph02/

https://nptel.ac.in/courses/115101009

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
		С	ourse Designed by I	Dr.G.Ravi, Dr. R	R. Yuvakkumar

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	L(1)	M(2)	M(2)	L(1)	M(2)	S(3)	M(2)	L(1)
CO5	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)
W.Av	3	2	2.6	2.6	2.8	1.8	2.8	2.4	2.6	2.2
		•		all "		and and		•	•	•

Course Outcome Vs Program Outcomes

S-Strong (3), M-Medium (2), L-Low (1)

AGAPPA UNIVERSI

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S (3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S (3)	S(3)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.Av	3	2.8	3	2.8	2.8

		rse code: 21402	NUCLEAR AND PARTICLE PHYSICS	Τ	Credits: 4	Hours: 4					
	UNIT I										
Objective 1 To introduce students to the fundamental principles and concepts governing nuclear and particle physics.											
indepe of deu parame section	endence uteron, eters – ns – Ma	-Spin depe Normaliza Nucleon	acteristics of Nucleus forces – Exchange forces a endence of Nucleus forces - Yukawa's Meson theory of tion of deuteron wave functions - Nucleon-nucleon -Nucleon scattering: Cross-section, Differential Cross ment- Quadrupole moment–S and D state admixtures - s.	f nuc scat ss-se	clear forces- G tering singlet ection, Scatter	round state and triplet ing Cross-					
Outco	ome 1		g the fundamental models of nuclear structure that are odes of nuclear excitation.	e use	ed to describe	K1					
			UNIT II								
Objec	tive 2	2 To understand the nuclear forces and different scattering mechanisms.									
Nuclea			g energy & mass defect – Weizacker's formula – mass			Drop model					
BohnMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMaging	ar Moc r Whee ic numb shell n	lels Bindin ler theory - pers – Spin nodel – Sc nr and Mott	g energy & mass defect – Weizacker's formula – mass Shell model – Single particle model, its validity and lir – orbit coupling - Angular momentum of nucleus groun hmidt lines – Magnetic dipole moment – Electric quad- telson: Nuclear vibration – Nuclear rotation –Nelson mo	para mita nd st drup odel.	abola, Liquid I tions – Rotatio ates – Magneti oole moment –	nal Spectra c Moments					
BohnMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMagingMaging	ar Moo r Whee ic numb shell n l of Boh	lels Bindin ler theory - pers – Spin nodel – Sc nr and Mott Describing	g energy & mass defect – Weizacker's formula – mass Shell model – Single particle model, its validity and lir – orbit coupling - Angular momentum of nucleus groun hmidt lines – Magnetic dipole moment – Electric quad	para mita nd st drup odel.	abola, Liquid I tions – Rotatio ates – Magneti oole moment –	nal Spectra c Moments					
 Bohn Magi of the Model 	ar Moo r Whee ic numb shell n l of Boh	lels Bindin ler theory - pers – Spin nodel – Sc nr and Mott Describing	g energy & mass defect – Weizacker's formula – mass Shell model – Single particle model, its validity and lir – orbit coupling - Angular momentum of nucleus groun hmidt lines – Magnetic dipole moment – Electric quad- relson: Nuclear vibration – Nuclear rotation –Nelson mo g the applications of semi-empirical mass formula a	para mita nd st drup odel.	abola, Liquid I tions – Rotatio ates – Magneti oole moment –	nal Spectra c Moments Collective					
 Bohn Magi of the Model 	ar Moo r Whee ic numb shell n l of Boh ome 2	lels Bindin ler theory - pers – Spin nodel – Sc nr and Mott Describing importanc	g energy & mass defect – Weizacker's formula – mass Shell model – Single particle model, its validity and lir – orbit coupling - Angular momentum of nucleus groun hmidt lines – Magnetic dipole moment – Electric quad- telson: Nuclear vibration – Nuclear rotation –Nelson mo g the applications of semi-empirical mass formula a e of spin-orbit interaction through different nuclear mod	para mita nd st drup odel.	abola, Liquid I tions – Rotatio ates – Magneti oole moment –	nal Spectra c Moments Collective					
 Bohn Magi of the Model Outco Objec Reacti mecha Pick-u Resona Wigne nuclea	ar Moo r Whee ic numb shell n l of Boh ome 2 etive 3 ions an unisms, up react: ance So er one lo	lels Bindin ler theory - pers – Spin nodel – Sc n and Mott Describing importanc To study d Reactor compound ion, Strippi cattering (H evel formu or – Critic	g energy & mass defect – Weizacker's formula – mass Shell model – Single particle model, its validity and lin – orbit coupling - Angular momentum of nucleus groun hmidt lines – Magnetic dipole moment – Electric quad- telson: Nuclear vibration – Nuclear rotation –Nelson mo g the applications of semi-empirical mass formula a e of spin-orbit interaction through different nuclear mod UNIT III	para mita nd st drup del. nd lels. y. N secti Disi Rec as – 1	abola, Liquid E tions – Rotatio ates – Magnetio oole moment – recognize the fuclear reaction on – Knock ou integration ener- ciprocity theore Neutron cycle i	K3 K3 K3 K3 K3 K3					

UNIT	IV
------	----

Objective 4 To acquire an idea about reaction cross sections, nuclear reactions and reactors

Nuclear Decay Gamow's Theory of Alpha decay - Fermi's theory of Beta decay – Kurie plots –Selection rules, Fermi & G.T Selection rules – Electron capture – Parity violation in Beta decay - Neutrinos – Measurement of neutrino helicity – Gamma decay – Angular momentum and parity selection rules - Internal Conversion Nuclear Isomerism - Positron's -source of Positron emitters-Biological application of nuclear particles in cancer therapy.

	Grasping enhanced knowledge about different nuclear decays and calculate the	
Outcome 4	penetration probability using Gamow theory and study the measurement of	K2,K3
	neutrino helicity. Apply the studied concepts of nuclear particles in biological-	

UNIT V

Objective 5 To understand the concept of nuclear decay and elementary particles.

Elementary Particle Physics Classification of fundamental forces–Particle Directory and quantum numbers (Charge, spin, parity, iso-spin, strangeness etc) – Leptons, Baryons and quarks - Spin and parity assignments, isospin, strangeness; The fundamental interactions - Phenomenology of weak interaction hadrons and leptons - Universal Fermi interaction–Elementary concepts of weak interactions– Translations in space – Rotations in space – Charge conjugation – Parity – Gell-Mann-Nishijima formula- Gell-Mann - Okubo mass formula for octet and decuplet hadrons - Time reversal–CPT invariance- Applications of symmetry arguments to particle reactions, Parity non-conservation in weak interaction; Relativistic kinematics.

Outcome 5	Understating about particle physics in directory and their interactions. Study the elementary concepts of week interactions. Applications of symmetry arguments to particle reactions, Parity non-conservation in weak interaction; Relativistic kinematics.	K2,K4,K6
-----------	--	----------

Suggested Readings:

Brian Martin, R. (2009), Nuclear and Particle Physics: An Introduction, 2nd Edition, John Wiley & Sons, Inc.

Irving Kaplan. (2012) Nuclear Physics, Narosa Publishing House.

Kakani Shubhra (2018) Nuclear and Particle Physics (Second Edition), Viva Publisher and Co.

Pandya, M.L, Yadav, P.R.S. (2016) *Elements of Nuclear Physics*, Kedar Nath Ram Nath publications, Meerut.

Tayal, D.C. (2018). Nuclear Physics, Himalaya Publishing House Pvt. Ltd., Vth Ed.

Online Resources

https://faculty.kfupm.edu.sa/PHYS/aanaqvi/Introductory-Nuclear-Physics-new-Krane.pdf https://www.tgc.ac.in/pdf/study-material/physics/Nuclear_Physics.pdf

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
				Course designed by	y Dr.N.Anandhan

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	M(2)	M(2)	S(3)	L(1)	L(1)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	L(1)	L(1)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	L(1)	M(2)	S(3)	S(3)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)
CO5	S(3)	M(2)	M(2)	M(2)	M(2)	S(3)	L(1)	L(1)	S(3)	S(3)
W.Av	3	2	2.6	2	2	3	1.2	1.4	3	3

Course Outcome Vs Program Outcomes

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	L(1)	M(2)	S(3)
CO2	S(3)	S(3)	L(1)	M(2)	S(3)
CO3	S(3)	S(3)	L(1)	S(3)	S(3)
CO4	S(3)	S(3)	L(1)	S(3)	S(3)
CO5	S(3)	S(3)	L(1)	S(3)	S(3)
W.Av	3	3	1	2.6	3

Core		e Code: 1403	TH STAT	ERMODYN TISTICAL	NAMICS AND MECHANIC	CS /	Г	Credits: 4	Hours: 4
	1		I	UN	IT – I	1			
Objective 1 The main objective of this paper is to impart knowledge about statistical mechanics to the students.									
Therr	nodynar	nics-Introd	duction - Ba	sic postulate	s of thermodyna	mics- Fu	nda	mental relatio	ns and
					es in the entropic				
					uler relation, der				
					state and Macro				
					ites and volume				
Therm	nodynam	ic processe	s: reversible.	irreversible	, quasi-state, adi	abatic, is	oth	ermal.	
Outco					n statistics and th				K2
					IT – II				I
Objec	ctive 2	To discuss	s in detail abo	out the basic	s of quantum sta	tistics.			
Therr	nodynar	nics- Theo	ry of ensem	bles - Classi	fication of ensen	nbles- Mi	cro	canonical dis	tribution
functi	on- Two	level system	m in micro c	anonical ens	emble –Gibbs pa	aradox an	ıd c	orrect formula	ı for
entrop	y- The c	anonical di	istribution fu	nction- Cont	act with thermod	lynamics	- Pa	artition function	on and
					ular velocities- E				
					nd canonical and				
					amics from statis				
					of ensembles				1 K4.
Outco	ome 2				of classical and o				K5 [´]
			1		T – III	1	2		1
Objec	ctive 3	To underst	tand the conr	nection betw	een statistical co	ncepts ar	nd t	hermodynami	cs.
Quan	tum Sta	tistics-I - B	Bose-Einstein	and Fermi I	Dirac distribution	n – Thern	nod	ynamic quant	ties –
Fluctu	ations in	different e	ense <mark>mbles</mark> – l	Bose and Fei	r <mark>mi</mark> distributions	in micro	car	nonical ensem	ble –
Maxw	ell Boltz	mann distri	ibution law f	or microstat	es in a classical	gas <mark>– Phy</mark>	sic	al interpretation	on of the
classic	cal limit	- Derivatio	on for Boltzm	ann equation	n for change of s	tates with	1 ar	nd without coll	isions –
Boltzı	mann equ	uation for q	uantum statis	stics – Equili	ibrium distributi	on in Bol	tzn	nann equation-	non
equili	brium pr	ocess; Joule	e Thompson	process – Fr	ee expansion and	d mixing	– T	Thermal condu	ction –
			mionic emiss						
Outco	ome 3	Analyze t	the classical						K4
01.		· .	1 1 1		$\frac{T - IV}{1}$				
	ctive 4		re knowledge			• 1		<u> </u>	· · 1
					as and thermody				
	-			•	Black body radiat				
					n – Thermodynar				
					energy and Ferr				d energy
					ermi gas at any				A 11
-					port processes; o	-			
-			conserved pr	operties-Dis	tribution of mole	ecular vel	001	ties-Equipartio	on and
virial	theorems			1 1 '	<u>C'1 1 D</u>	1 5	•		L/2
Outor	ome 4	Compare t	the statistical	behaviour c	of ideal Bose gas	and Fern	nı g	gas	K2 K5

		UNIT -	- V		
Objective 5	To distinguish betwee capacities and phase t		quantum distrib	outions and understa	and heat
Theory of Hea	t - Heat capacities of h	eteronuclear dia	tomic gas - He	at capacities of hon	nonuclear
•	Heat capacities of solid		-	-	
- Heat capacitie	es of metals - Heat capa	icity of Bose gas	- One-dimens	ional Ising model a	nd its solution
by variational 1	nethod - Exact solution	for one dimens	ional Ising mod	lel - Phase transitio	ns and
criterion for ph	ase transitions - Classif	fication of phase	transitions by	order and by symm	etry - Phase
diagrams for p	ure systems - Clausius (
Outcome 5	Understanding on heat transitions explain	capacities for ga	as, solids and e	lucidate phase	K2 K4
Suggested Rea	dings:				
	(2008). An Introductory	Course of Stati	stical Mechani	cs. New Delhi: Na	rosa Publishing
House.					
Garg, S.C. Ban	sal, R.M. Ghosh, C.K.	(2017). Therma	l Physics: With	Kinetic Theory, Th	hermodynamics
and Statistical	Ansermet,	L COM	-		
P. Brechet S.	D. (2019). Principles	of Thermodyr	namics and S	tatistical Mechani	cs. Cambridge
University Pres	· / I				C
Koks, D. (2018	S). An Introduction to S	tatistical Mecha	nics. Springer.		
Puglisi, A. San Systems. Basel	racino, A. Vulpiani, A MDPI	A. (2018). Therr	nodynamics ar	nd Statistical Mech	nanics of Small
Online Resource	5	EV/A XA	CANE		
https://web.sta	nford.edu/~peastman/s	tatmech/thermoo	lynamics.html		
https://ocw.mi	t.edu/courses				
https://phys.lib	pretexts.org/Special:Sea	rch?qid=&fpid=	=230&fpth=&q	uery=thermodynan	<u>nics+&type=wik</u>
https://ocw.mi	t.edu/courses/3-020-the	rmodynamics-o	f-materials-spr	ing-2021/pages/lec	ture-notes-and-
latex/			Y B		
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
		AND DE LE	Course des	igned by Dr. M. R	amesh Prabhu

		<u> </u>	<u>Jourse O</u>	utcome	<u>vs frog</u>	ram Ot	itcomes	-		-
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO/PO										
CO1	S(3)	S(3)	M(2)	M(2)	L(1)	L(1)	M(2)	L(1)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	M(2)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)
W.Av	3	3	2.8	2.8	2.4	2	2.6	2.4	3	3

Course Outcome Vs Program Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	L(1)	M(2)	L(1)	M(2)
CO2	S(3)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.Av	3	2.4	2.8	2.2	2.8

Course Outcome Vs Program Specific Outcomes

NON MAJOR ELECTIVE COURSE

NME Course Code: ANALYTICAL INSTRUMENTATION T Credits: 2 Hours: Unit I
Objective 1 To impart fundamental aspects of analytical instrumentation
Structural Characterization: Instrumentation of X-ray spectrometer – Detectors – X-ray fluorescen
spectrometer - X-ray diffractometer - X-ray absorption - Application, strengths and limitation of X-ray
diffraction.
Outcome 1 Understand the different processes of structural and topographical characterization techniques
Unit II
Objective 2 To show insight into the fundamental structural properties of the material analysis
Spectral Characterization: Laser Raman spectrometer – Laser sources – Detectors – Sample handling. Infra
spectrophotometry - Instrumentation - Radiation sources - Detectors - Fourier Transform Interferometer - NM
basic principles – Continuous wave NMR spectrometer – ESR basic principles – ESR spectrometer.
Outcome 2 Prepare the samples for various characterization techniques
Unit III
Objective 3 To discuss both experimental and theoretical parts of spectral characterization techniques
Optical Characterization: Ultraviolet absorption spectrophotometry - Instrumentation - Detectors - Filter
Monochromators - Instruments for absorption photometry - Photoluminescence principles - Instrumentation a
applications.
Outcome 3Give details on different characterization tools to analyze the samples
Unit IV
Objective 4 To explore both thermal and mechanical characterization techniques
Thermal and Mechanical Characterization: Introduction to thermal methods – Thermogravimetric analysi
Differential thermal analysis – Differential scanning calorimetry – Mechanical principles – Methods of hardn
testing and its applications.
Outcome 4 Elucidate the optical spectroscopy techniques
Unit V
Objective 5 To impart fundamental principles of morphological characterization
Morphological Characterization: Basic Principles – Instrumentation: AFM – Contact and Non-Contact Mod
Scanning Electron Microscope (SEM) – Transmission Electron Microscopy.
Outcome 5 Explain different electron microscopy techniques
Suggested Readings:
Banwell (2008). Fundamentals of Molecular & Spectroscopy. New Delhi: TMH.
Chatwal, G. & Anand S. (1996). Instrumental Methods of Chemical Analysis. New Delhi: Himalaya Publication
House. Develop A. Sharpy F. James Hollon Stanley P. Crevel. (2016) Principles of Instrumental Analysis US
Douglas A. Skoog, F. James Holler, Stanley R. Crouch. (2016) Principles of Instrumental Analysis. US
Cengage Learning. Sindy P.S. (2006) Molecular Spectroscory, New Delhi, TMU
Sindu, P.S. (2006). <i>Molecular Spectroscopy</i> . New Delhi: TMH. Willard, H.H. & Merritretal. (1986). <i>Instrumental methods of Analysis</i> . New Delhi: CBS Pub & Co.
Online Resources
https://nptel.ac.in/courses/103108100
https://freevideolectures.com/course/3029/modern-instrumental-methods-of-analysis
Course designed by Dr. R. Yuvakkumar, Dr. S. Sudhah
Course designed by Dr. R. 1 uvakkumar, Dr. S. Suunar

Course Outcome Vs Program Outcomes

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	1	3	1	2	3
CO2	3	3	3	3	3	2	3	3	3	3
CO3	3	3	3	3	3	1	3	3	3	3
CO4	3	3	3	2	3	1	3	3	3	3
CO5	3	3	3	2	2	2	3	3	3	3

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	2
CO2	3	3	3	2	3
CO3	3	3	3	2	3
CO4	3	3	3	2	3
CO5	3	3	3	2	3

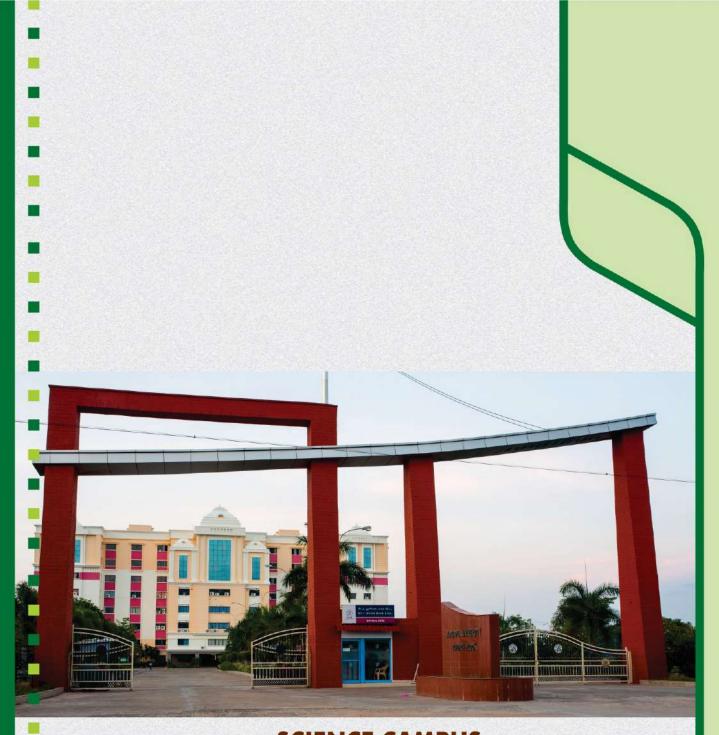
NME	Course code:	Imaging : Fundamentals and Applications	T	Credits:	Hours: 3				
		Unit I		4	5				
Objectiv	e 1 To provide	the fundamental properties of light							
3		ectromagnetic Waves - Revision of Maxwell's	ealla	tions - Lie	oht as an				
electromagnetic wave – Light velocity in various media - index of refraction, - Fermat's Principle -									
Polarization – Wave Characteristics – Wavelength, Amplitude, Phase, Period, Frequency – Sources of									
		Huygens' Principle – Reflection, Refraction, A							
	nce, Diffraction,			1)	,				
Outcom		e properties of light and its application in imaging							
		Unit II							
Objectiv	e 2 To felicitate	e the learners different light sources and detectors f	òr im	aging					
Basics of		and Detectors: Monochromatic and Polychromatic			n Vapour,				
LED, LA	SER - Mercury	and Halogen Lamps- Light Dependent Resistor, Ph	otodi	ode-CCD	-				
Outcom	Constructio	n of knowledge on different light sources and	dete	ctors and e	nable the				
Outcom	students to	distinguish and choose the suitable one for imaging	5						
		Unit III							
Objectiv		knowledge on lenses and the merit of the images							
	0	ection: Types of Lenses, Thin and Thick – Focal							
	e	Formation using Convex and Concave Lenses – De		•					
	_	1 Aberration - Image Corrections- Geometric	Cor	rection- Ra	diometric				
Correctio									
Outcom	e 3 The learner image	would be able to understand the concepts of le	enses	and the me	erit of the				
	1	Unit IV							
Objectiv		nd the science of fiber optics							
Step and	Graded Index F	ation of Light in an Optical Fiber-Acceptance A Tibers- Single mode and Multimode Fibers- Phot we Guide-Fiber Losses and Dispersion-Application	onic						
Outcome		tion of fiber optics felicitates the learner about rem		naging					
Outcom				llagilig					
		Unit V							
Objectiv	e 5 To familiar	ize the different imaging tools							
-	es of Imaging To Ultrasound.	ols: Camera, Microscope, Telescope, SEM, TEM,	CLS	M, AFM, Ei	ndoscope,				
	The course	also helps the students to be exposed to the various	sima	ging tools in	different				
Outcom	areas of app		5 mag		rannerent				
00	d Readings :		a st						
		Introductory Physics: Building and Understanding	g,, 1°	Edition, W	iley India				
	td., New Delhi.	with the Date Difference (2000) 4 1. 1	DL	ing and Eli	tion V				
		orthy Babu and Dr.S.Vasudevan, (2009), Applied	rnys	$lCS, 2^{-1} Edl$	<i>uon</i> , v ijay				
	le Imprints Pvt.Lt	P.G.Kshirsagar, (2019), A Text Book of Engine	orina	Physics Ot	h Edition				
		y, New Delhi, 2019.	ing .	1 <i>nysics</i> , 9	Lanton,				
		Roger A Freedman, (2018), University Physics v	with 1	Modern Ph	vsics 14^{th}				
Tugh		(2010), Oniversity 1 hysics	VIII 1		5105, 17				

Edition, Pearson India Education Services, Noida, 2018. Feynman, Leighton and Sands, *The Feynman Lectures on Physics, (2009)*, Vol.1, Pearson India Education Services, Noida.

Online Resources

https://www.worldscientific.com/worldscibooks/10.1142/p770#t=aboutBook https://www.kth.se/social/files/542d1224f27654321376a4b4/Compendium.Imaging.Physics.pdf

Course designed by Dr. K. Sankaranarayanan


CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	1	1	3	1	3	3
CO2	3	2	3	2	3	2	3	2	3	3
CO3	3	2	2	2	2	2	3	3	3	3
CO4	3	2	3	3	2	2	3	3	3	2
CO5	3	2	3	2	3	3	3	3	3	2

Course Outcome Vs Program Outcomes

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome Vs Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3		3	1	2
CO2	3	2	3	2	3
CO3	3	2	3	2	3
CO4	3	3	3	2	2
CO5	3	2	3	2	2

SCIENCE CAMPUS